首页> 外文OA文献 >A Bayesian approach to inferring chemical signal timing and amplitude in a temporal logic gate using the cell population distributional response
【2h】

A Bayesian approach to inferring chemical signal timing and amplitude in a temporal logic gate using the cell population distributional response

机译:贝叶斯方法使用细胞群体分布响应推断时间逻辑门中的化学信号时序和幅度

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Stochastic gene expression poses an important challenge for engineering robust behaviors in a heterogeneous cell population. Cells address this challenge by operating on distributions of cellular responses generated by noisy processes. Similarly, a previously published temporal logic gate considers the distribution of responses across a cell population under chemical inducer pulsing events. The design uses a system of two integrases to engineer an E. coli strain with four DNA states that records the temporal order of two chemical signal events. The heterogeneous cell population response was used to infer the timing and duration of the two chemical signals for a small set of events. Here we use the temporal logic gate system to address the problem of extracting information about chemical signal events. We use the heterogeneous cell population response to infer whether any event has occurred or not and also to infer its properties such as timing and amplitude. Bayesian inference provides a natural framework to answer our questions about chemical signal occurrence, timing, and amplitude. We develop a probabilistic model that incorporates uncertainty in the how well our model captures the cell population and in how well a sample of measured cells represents the entire population. Using our probabilistic model and cell population measurements taken every five minutes on generated data, we ask how likely it was to observe the data for parameter values that describe square-shaped inducer pulses. We compare the likelihood functions associated with the probabilistic models for the event with the chemical signal pulses turned on versus turned off. Hence, we can determine whether an event of chemical induction of integrase expression has occurred or not. Using Markov Chain Monte Carlo, we sample the posterior distribution of chemical pulse parameters to identify likely pulses that produce the data measurements. We implement this method and obtain accurate results for detecting chemical inducer pulse timing, length, and amplitude. We can detect and identify chemical inducer pulses as short as half an hour, as well as all pulse amplitudes that fall under biologically relevant conditions.
机译:随机基因表达对异质细胞群体中的工程鲁棒行为提出了重要挑战。细胞通过处理由噪声过程产生的细胞反应的分布来应对这一挑战。类似地,先前发布的时间逻辑门考虑化学诱导物脉冲事件下整个细胞群体的响应分布。该设计使用两个积分系统来设计具有四个DNA状态的大肠杆菌菌株,该菌株记录了两个化学信号事件的时间顺序。异质细胞群体反应被用来推断两个事件的时间序列和持续时间。在这里,我们使用时间逻辑门系统来解决有关化学信号事件的信息提取问题。我们使用异类细胞群体反应来推断是否发生了任何事件,还可以推断其特性(例如时间和幅度)。贝叶斯推理提供了一个自然的框架,可以回答有关化学信号发生,时间和幅度的问题。我们开发了一个概率模型,该模型在将模型捕获细胞种群的能力以及所测细胞样本代表整个种群的能力方面纳入了不确定性。使用我们的概率模型和每五分钟对生成的数据进行一次的细胞种群测量,我们询问观察数据中描述方形诱导脉冲的参数值的可能性。我们在化学信号脉冲打开或关闭的情况下,比较了与事件概率模型相关的似然函数。因此,我们可以确定是否发生了整合酶表达的化学诱导事件。使用马尔可夫链蒙特卡罗,我们采样化学脉冲参数的后验分布,以识别可能产生数据测量的脉冲。我们实施此方法并获得准确的结果,以检测化学诱导剂脉冲的时间,长度和幅度。我们可以检测和识别短短半小时的化学诱导物脉冲,以及在生物学相关条件下落下的所有脉冲幅度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号