首页> 外文OA文献 >Ancillary Ligand and Olefin Substituent Effects on Olefin Dissociation for Cationic Zirconocene Complexes Bearing a Coordinated Pendant Olefin
【2h】

Ancillary Ligand and Olefin Substituent Effects on Olefin Dissociation for Cationic Zirconocene Complexes Bearing a Coordinated Pendant Olefin

机译:配体配体和烯烃取代基对配位侧链烯烃的阳离子锆茂复合物的烯烃解离的影响

摘要

A series of zirconocene complexes bearing 2,2-dimethyl-2-sila-4-pentenyl substituents (and methyl-substituted olefin variants) ((η^5-C_5H_5)_2Zr(CH_3)(CH_2SiMe_2CH_2CR^1═CR^2R^3) (R^1, R^2, R^3 = H, CH_3, 1, 5−7), (η^5-C_5H_4CMe_3)_2Zr(CH_3)(CH_2SiMe_2CH_2CH═CH_2) (2), {Me_2Si(η^5-C_5H_4)_2}Zr(CH_3)(CH_2SiMe_2CH_2CH═CH_2) (3), and {1,2-(SiMe_2)_2(η^5-C_5H_3)_2Zr(CH_3)(CH_2SiMe_2CH_2CH═CH_2) (4)) have been prepared. Methide abstraction with B(C_6F_5)_3 results in reversible coordination of the tethered olefin to the cationic zirconium center. The kinetics of olefin dissociation have been examined using NMR methods, and the effects of ligand variation for unlinked, singly [SiMe_2]-linked, and doubly [SiMe_2]-linked bis(cyclopentadienyl) arrangements have been compared (ΔG^⧧ values for olefin dissociation vary from 11.4 to 15.6 kcal·mol^(-1) measured over the temperature range 223−283 K). For the cation derived from 4 the kinetics for olefin dissociation and site epimerization (inversion at zirconium) can be distinguished. Additionally, with this ligand system competitive binding of the olefin and the [CH_3B(C_6F_5)_3] anion is observed. Methide abstraction from {1,2-(SiMe_2)_2(η^5-C_5H_3)_2}Zr(CH_3)(CH_2CMe_2CH_2CH═CH_2) results in rapid β-allyl elimination with loss of isobutene to cleanly afford the allyl cation [{1,2-(SiMe_2)_2(η^5-C_5H_3)_2}Zr(η^3-CH_2CH═CH_2)]^+.
机译:一系列带有2,2-二甲基-2-sila-4-戊烯基取代基的锆茂复合物(和甲基取代的烯烃变体)((η^ 5-C_5H_5)_2Zr(CH_3)(CH_2SiMe_2CH_2CR ^1═CR^ 2R ^ 3 )(R ^ 1,R ^ 2,R ^ 3 = H,CH_3,1,5−7),(η^ 5-C_5H_4CMe_3)_2Zr(CH_3)(CH_2SiMe_2CH_2CH═CH_2)(2),{Me_2Si(η^ 5-C_5H_4)_2} Zr(CH_3)(CH_2SiMe_2CH_2CH═CH_2)(3)和{1,2-(SiMe_2)_2(η^ 5-C_5H_3)_2Zr(CH_3)(CH_2SiMe_2CH_2CH═CH_2)(4))具有准备好了。使用B(C_6F_5)_3进行甲基化提取会导致链状烯烃与阳离子锆中心的可逆配位。已使用NMR方法检查了烯烃离解的动力学,并比较了配体变化对未连接的,[SiMe_2]连接的和双[SiMe_2]连接的双(环戊二烯基)排列的影响(烯烃的ΔG^⧧值)在223-283 K的温度范围内测得的解离度从11.4到15.6 kcal·mol ^(-1)不等。对于衍生自4的阳离子,可以区分烯烃解离和位点差向异构化(锆转化)的动力学。另外,利用该配体体系,观察到烯烃和[CH_3B(C_6F_5)_3]阴离子的竞争性结合。从{1,2-(SiMe_2)_2(η^ 5-C_5H_3)_2} Zr(CH_3)(CH_2CMe_2CH_2CH═CH_2)进行甲基化提取可快速消除β-烯丙基,同时失去异丁烯,从而得到烯丙基阳离子[{1 ,2-(SiMe_2)_2(η^ 5-C_5H_3)_2} Zr(η^ 3-CH_2CH = CH_2)] +。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号