首页> 外文OA文献 >A Resource Constrained Neural Network for the Design of Embedded Human Posture Recognition Systems
【2h】

A Resource Constrained Neural Network for the Design of Embedded Human Posture Recognition Systems

机译:用于嵌入式人姿势识别系统设计的资源受限神经网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A custom HW design of a Fully Convolutional Neural Network (FCN) is presented in this paper to implement an embeddable Human Posture Recognition (HPR) system capable of very high accuracy both for laying and sitting posture recognition. The FCN exploits a new base-2 quantization scheme for weight and binarized activations to meet the optimal trade-off between low power dissipation, a very reduced set of instantiated physical resources and state-of-the-art accuracy to classify human postures. By using a limited number of pressure sensors only, the optimized HW implementation allows keeping the computation close to the data sources according to the edge computing paradigm and enables the design of embedded HP systems. The FCN can be simply reconfigured to be used for laying and sitting posture recognition. Tested on a public dataset for in-bed posture classification, the proposed FCN obtains a mean accuracy value of 96.77% to recognize 17 different postures, while a small custom dataset has been used for training and testing for sitting posture recognition, where the FCN achieves 98.88% accuracy to recognize eight positions. The FCN has been prototyped on a Xilinx Artix 7 FPGA where it exhibits a dynamic power dissipation lower than 11 mW and 7 mW for laying and sitting posture recognition, respectively, and a maximum operation frequency of 47.64 MHz and 26.6 MHz, corresponding to an Output Data Rate (ODR) of the sensors of 16.50 kHz and 9.13 kHz, respectively. Furthermore, synthesis results with a CMOS 130 nm technology have been reported, to give an estimation about the possibility of an in-sensor circuital implementation.
机译:本文提出了一种完全卷积神经网络(FCN)的定制HW设计,以实现能够非常高精度地铺设和坐姿姿势识别的嵌入式人姿势识别(HPR)系统。 FCN利用了一种新的基础-2量化方案,以实现重量和二值化激活,以满足低功耗之间的最佳权衡,这是一种非常减少的实例化物理资源和最先进的准确性,以分类人类姿势。仅使用有限数量的压力传感器,优化的HW实现允许根据边缘计算范例将计算保持靠近数据源,并启用嵌入式HP系统的设计。 FCN可以简单地重新配置以用于铺设和坐姿姿势识别。在公共数据集上进行测试,用于床上姿势分类,拟议的FCN获得平均精度值为96.77%,以识别17个不同的姿势,而小型定制数据集已被用于培训和测试坐姿姿势识别,其中FCN实现识别八个职位的准确性98.88%。 FCN已在Xilinx Artix 7 FPGA上进行原型设计,其中它具有低于11 MW和7 MW的动态功耗,分别用于铺设和坐姿姿势,以及对应于输出的47.64 MHz和26.6 MHz的最大操作频率分别为16.50 kHz和9.13 kHz的传感器数据速率(ODR)。此外,已经报道了具有CMOS 130nm技术的合成结果,以估计关于传感器电路实现的可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号