首页> 外文OA文献 >Detection and classification of ECG noises using decomposition on mixed codebook for quality analysis
【2h】

Detection and classification of ECG noises using decomposition on mixed codebook for quality analysis

机译:MECG噪声的检测和分类在混合码本对质量分析中的分解

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this Letter, a robust technique is presented to detect and classify different electrocardiogram (ECG) noises including baseline wander (BW), muscle artefact (MA), power line interference (PLI) and additive white Gaussian noise (AWGN) based on signal decomposition on mixed codebooks. These codebooks employ temporal and spectral-bound waveforms which provide sparse representation of ECG signals and can extract ECG local waves as well as ECG noises including BW, PLI, MA and AWGN simultaneously. Further, different statistical approaches and temporal features are applied on decomposed signals for detecting the presence of the above mentioned noises. The accuracy and robustness of the proposed technique are evaluated using a large set of noise-free and noisy ECG signals taken from the Massachusetts Institute of Technology-Boston's Beth Israel Hospital (MIT-BIH) arrhythmia database, MIT-BIH polysmnographic database and Fantasia database. It is shown from the results that the proposed technique achieves an average detection accuracy of above 99% in detecting all kinds of ECG noises. Furthermore, average results show that the technique can achieve an average sensitivity of 98.55%, positive productivity of 98.6% and classification accuracy of 97.19% for ECG signals taken from all three databases.
机译:在这封信中,提出了一种稳健的技术,以检测和分类包括基线漂泊(BW),肌肉人工制品(MA),电力线路干扰(PLI)和基于信号分解的附加白色高斯噪声(AWGN)的不同心电图(ECG)噪声关于混合码本。这些码本采用时间和频谱绑定波形,其提供ECG信号的稀疏表示,并可以同时提取ECG本地波以及包括BW,PLI,MA和AWGN的ECG噪声。此外,将不同的统计方法和时间特征应用于用于检测上述噪声的存在的分解信号。通过从马萨诸塞州的无噪声和嘈杂的ECG信号评估所提出的技术的准确性和稳健性,从马萨诸塞州科技技术研究所 - 波士顿的贝丝以色列医院(MIT-BIH)心律失常数据库,MIT-BIH Polysmnographic数据库和Fantasia数据库。从结果显示所提出的技术在检测各种ECG噪声中实现高于99%的平均检测精度。此外,平均结果表明,该技术可以达到98.55%,阳性生产率的平均灵敏度为98.6%,分类精度为来自所有三个数据库的ECG信号的97.19%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号