首页> 外文OA文献 >Visual attention and target detection in cluttered natural scenes
【2h】

Visual attention and target detection in cluttered natural scenes

机译:杂乱自然场景中的视觉注意力和目标检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Rather than attempting to fully interpret visual scenes in audparallel fashion, biological systems appear to employ a serial strategy byudwhich an attentional spotlight rapidly selects circumscribed regions in theudscene for further analysis. The spatiotemporal deployment of attentionudhas been shown to be controlled by both bottom-up (image-based) andudtop-down (volitional) cues. We describe a detailed neuromimetic computerudimplementation of a bottom-up scheme for the control of visualudattention, focusing on the problem of combining information across modalitiesud(orientation, intensity, and color information) in a purely stimulusdrivenudmanner. We have applied this model to a wide range of targetuddetection tasks, using synthetic and natural stimuli. Performance has,udhowever, remained difficult to objectively evaluate on natural scenes,udbecause no objective reference was available for comparison. Weudpresent predicted search times for our model on the Search–2 databaseudof rural scenes containing a military vehicle. Overall, we found a poorudcorrelation between human and model search times. Further analysis,udhowever, revealed that in 75% of the images, the model appeared touddetect the target faster than humans (for comparison, we calibrated theudmodel’s arbitrary internal time frame such that 2 to 4 image locationsudwere visited per second). It seems that this model, which had originallyudbeen designed not to find small, hidden military vehicles, but rather toudfind the few most obviously conspicuous objects in an image, performedudas an efficient target detector on the Search–2 dataset. Further developmentsudof the model are finally explored, in particular through a moreudformal treatment of the difficult problem of extracting suitable low-leveludfeatures to be fed into the saliency map.
机译:生物系统似乎并没有尝试以完全平行的方式完全解释视觉场景,而是采取了一系列策略,通过这种策略,关注的聚光灯会迅速选择场景中的外接区域以进行进一步分析。已经显示,注意力的时空部署受自下而上(基于图像)和 udtop-down(自愿)提示的控制。我们描述了一种详细的模拟神经计算机用于实现视觉注意力控制的自下而上方案的实现,重点是在纯刺激驱动的 udmanner中跨模式 ud(方向,强度和颜色信息)组合信息的问题。我们已使用合成和自然刺激将该模型应用于广泛的目标 uddetect检测任务。由于没有客观的参考资料可用于比较,因此在自然场景上的表现仍然很难进行客观的评估。我们在Search-2数据库 udof包含军车的乡村场景中表示模型的预测搜索时间。总体而言,我们发现人与模型搜索时间之间的差不相关。进一步的分析显示,在75%的图像中,该模型似乎比人类更快地检测到目标(为进行比较,我们校准了udmodel的任意内部时间范围,因此每次访问2至4个图像位置第二)。看起来,该模型最初设计来不是寻找小型隐藏的军用车辆,而是发现图像中最明显的几个稀有物体,在Search-2数据集上执行了高效的目标检测器。最后,对模型的进一步开发进行了探索,特别是通过对提取合适的低水平特征以供输入显着性图这一难题的更正式的处理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号