首页> 外文OA文献 >Can we accurately classify schizophrenia patients from healthy controls using magnetic resonance imaging and machine learning? A multi-method and multi-dataset study
【2h】

Can we accurately classify schizophrenia patients from healthy controls using magnetic resonance imaging and machine learning? A multi-method and multi-dataset study

机译:我们可以使用磁共振成像和机器学习准确地分类精神分裂症患者的健康控制吗?多方法和多数据集研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Machine learning is a powerful tool that has previously been used to classify schizophrenia (SZ) patients from healthy controls (HC) using magnetic resonance images. Each study, however, uses different datasets, classification algorithms, and validation techniques. Here, we perform a critical appraisal of the accuracy of machine learning methodologies used in SZ/HC classifications studies by comparing three machine learning algorithms (logistic regression [LR], support vector machines [SVMs], and linear discriminant analysis [LDA]) on three independent datasets (435 subjects total) using two tissue density estimates and cortical thickness (CT). Performance is assessed using 10-fold cross-validation, as well as a held-out validation set. Classification using CT outperformed tissue densities, but there was no clear effect of dataset. LR, SVMs, and LDA each yielded the highest accuracies for a different feature set and validation paradigm, but most accuracies were between 55 and 70%, well below previously reported values. The highest accuracy achieved was 73.5% using CT data and an SVM. Taken together, these results illustrate some of the obstacles to constructing effective disease classifiers, and suggest that tissue densities and CT may not be sufficiently sensitive for SZ/HC classification given current available methodologies and sample sizes.
机译:机器学习是一种强大的工具,以前用于使用磁共振图像对来自健康对照(HC)的精神分裂症(SZ)患者进行分类。但是,每项研究都使用不同的数据集,分类算法和验证技术。在这里,我们通过比较三种机器学习算法(Logistic回归[LR],支持向量机[SVM]和线性判别分析[LDA])对SZ / HC分类研究中使用的机器学习方法的准确性进行了批判性评估使用两个组织密度估计和皮质厚度(CT)的三个独立数据集(总计435个受试者)。使用10倍的交叉验证和保持验证集进行评估性能。使用CT优于组织密度的分类,但数据集没有明显的效果。 LR,SVM和LDA各自产生了不同的特征集和验证范例的最高精度,但大多数精度在55%到70%之间,远低于先前报告的值。使用CT数据和SVM实现的最高精度为73.5%。总之,这些结果说明了构建有效疾病分类剂的一些障碍,并表明组织密度和CT对于当前可用的方法和样本尺寸给出了SZ / HC分类的组织密度和CT可能对SZ / HC分类可能不够敏感。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号