首页> 外文OA文献 >Robust Diagnostics for Bayesian Compressive Sensing with Applications to Structural Health Monitoring
【2h】

Robust Diagnostics for Bayesian Compressive Sensing with Applications to Structural Health Monitoring

机译:贝叶斯压缩感知的鲁棒性诊断及其在结构健康监测中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In structural health monitoring (SHM) systems for civil structures, signal compression is often important to reduce the cost of data transfer and storage because of the large volumes of data generated from the monitoring system. Compressive sensing is a novel data compressing method whereby one does not measure the entire signal directly but rather a set of related ("projected") measurements. The length of the required compressive-sensing measurements is typically much smaller than the original signal, therefore increasing the efficiency of data transfer and storage. Recently, a Bayesian formalism has also been employed for optimal compressive sensing, which adopts the ideas in the relevance vector machine (RVM) as a decompression tool, such as the automatic relevance determination prior (ARD). Recently publications illustrate the benefits of using the Bayesian compressive sensing (BCS) method. However, none of these publications have investigated the robustness of the BCS method. We show that the usual RVM optimization algorithm lacks robustness when the number of measurements is a lot less than the length of the signals because it can produce sub-optimal signal representations; as a result, BCS is not robust when high compression efficiency is required. This induces a tradeoff between efficiently compressing data and accurately decompressing it. Based on a study of the robustness of the BCS method, diagnostic tools are proposed to investigate whether the compressed representation of the signal is optimal. With reliable diagnostics, the performance of the BCS method can be monitored effectively. The numerical results show that it is a powerful tool to examine the correctness of reconstruction results without knowing the original signal.
机译:在用于民用建筑的结构健康监视(SHM)系统中,信号压缩通常对于降低数据传输和存储成本非常重要,因为监视系统会生成大量数据。压缩感测是一种新颖的数据压缩方法,其中,不直接测量整个信号,而是一组相关的(“投影”)测量值。所需的压缩传感测量的长度通常比原始信号小得多,因此提高了数据传输和存储的效率。近来,贝叶斯形式主义也已经被用于最佳压缩感测,其采用相关向量机(RVM)中的思想作为解压工具,例如自动相关性先验确定(ARD)。最近的出版物说明了使用贝叶斯压缩感测(BCS)方法的好处。但是,这些出版物都没有研究BCS方法的鲁棒性。我们表明,当测量次数远小于信号长度时,常规的RVM优化算法缺乏鲁棒性,因为它可以产生次优的信号表示形式。结果,当需要高压缩效率时,BCS不够鲁棒。这导致在有效压缩数据和准确解压缩数据之间进行权衡。基于对BCS方法的鲁棒性的研究,提出了诊断工具来研究信号的压缩表示是否最佳。通过可靠的诊断,可以有效地监视BCS方法的性能。数值结果表明,它是在不知道原始信号的情况下检查重建结果正确性的强大工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号