首页> 外文OA文献 >On stability of the dual-frequency motion modes of a single-mass vibratory machine with a vibration exciter in the form of a passive auto-balancer
【2h】

On stability of the dual-frequency motion modes of a single-mass vibratory machine with a vibration exciter in the form of a passive auto-balancer

机译:振动激励器的单质量振动机的双频运动模式稳定性,振动激励器以无源自动平衡器的形式

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

By employing computational experiments, we investigated stability of the dual-frequency modes of motion of a single-mass vibratory machine with translational rectilinear motion of the platform and a vibration exciter in the form of a passive auto-balancer.For the vibratory machines that are actually applied, the forces of external and internal resistance are small, with the mass of loads much less than the mass of the platform. Under these conditions, there are three characteristic rotor speeds. In this case, at the rotor speeds:– lower than the first characteristic speed, there is only one possible frequency at which loads get stuck; it is a pre-resonance frequency;– positioned between the first and second characteristic speeds, there are three possible frequencies at which loads get stuck, among which only one is a pre-resonant frequency;– positioned between the second and third characteristic speeds, there are three possible frequencies at which loads get stuck; all of them are the over-resonant frequencies;– exceeding the third characteristic speed, there is only one possible frequency at which loads get stuck; it is the over-resonant frequency and it is close to the rotor speed.Under a stable dual-frequency motion mode, the loads: create the greatest imbalance; rotate synchronously as a whole, at a pre-resonant frequency. The auto-balancer excites almost perfect dual-frequency vibrations. Deviations of the precise solution (derived by integration) from the approximated solution (established previously using the method of the small parameter) are equivalent to the ratio of the mass of loads to the mass of the entire machine. That is why, for actual machines, deviations do not exceed 2 %.There is the critical speed above which a dual-frequency motion mode loses stability. This speed is less than the second characteristic speed and greatly depends on all dimensionless parameters of the system.At a decrease in the ratio of the mass of balls to the mass of the entire system, critical speed tends to the second characteristic speed. However, this characteristic speed cannot be used for the approximate computation of critical speed due to an error, rapidly increasing at an increase in the ratio of the mass of balls to the mass of the system. Based on the results of a computational experiment, we have derived a function of dimensionless parameters, which makes it possible to approximately calculate the critical speed.
机译:通过采用计算实验,我们研究了具有平台的平移直线运动的单质量振动机的双频运动的稳定性,以及用于被动自动平衡器的形式的平台的直线运动和振动激励器。对于振动机器而言实际应用,外部和内部电阻的力量小,负载质量远小于平台的质量。在这些条件下,有三个特征转子速度。在这种情况下,在转子速度下: - 低于第一特征速度,只有一个可能的频率载荷被卡住;它是一种预谐振频率; - 定位在第一和第二特征速度之间,有三种可能的频率在该频率上被卡住,其中只有一个是一个是预谐振频率; - 定位在第二和第三特征速度之间,有三种可能的频率粘被卡住;所有这些都是过度谐振频率; - 超过第三种特征速度,只有一个可能的频率达到卡住;它是过谐振频率,它接近转子速度。在稳定的双频运动模式下,负载:创造最大的不平衡;以预谐振频率同步地旋转。自动平衡器激发几乎完美的双频振动。精确解决方案(通过集成的集成)的偏差来自近似的溶液(先前使用的小参数方法建立)等同于负载质量与整个机器质量的比率。这就是为什么对于实际机器,偏差不超过2%。是高于双频运动模式失去稳定性的临界速度。这种速度小于第二特征速度,大大取决于系统的所有无量纲参数。该球的质量与整个系统的质量的比例的减少,临界速度趋于第二特征速度。然而,这种特征速度不能用于由于误差而导致临界速度的近似计算,随着球的质量与系统质量的增加而迅速增加。基于计算实验的结果,我们推导了无量纲参数的函数,这使得可以大致计算临界速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号