首页> 外文OA文献 >Analyzing Controllability of Bilinear Systems on Symmetric Groups: Mapping Lie Brackets to Permutations
【2h】

Analyzing Controllability of Bilinear Systems on Symmetric Groups: Mapping Lie Brackets to Permutations

机译:分析双线性系统对称组的可控性:将谎言括号映射到排列

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Bilinear systems emerge in a wide variety of fields as natural models fordynamical systems ranging from robotics to quantum dots. Analyzingcontrollability of such systems is of fundamental and practical importance, forexample, for the design of optimal control laws, stabilization of unstablesystems, and minimal realization of input-output relations. Tools from Lietheory have been adopted to establish controllability conditions for bilinearsystems, and the most notable development was the Lie algebra rank condition(LARC). However, the application of the LARC may be computationally expensivefor high-dimensional systems. In this paper, we present an alternative andeffective algebraic approach to investigate controllability of bilinearsystems. The central idea is to map Lie bracket operations of the vector fieldsgoverning the system dynamics to permutation multiplications on a symmetricgroup, so that controllability and controllable submanifolds can becharacterized by permutation cycles. The method is further applicable tocharacterize controllability of systems defined on undirected graphs, such asmulti-agent systems with controlled couplings between agents and Markov chainswith tunable transition rates between states, which in turn reveals a graphrepresentation of controllability through the graph connectivity.
机译:Bilinear Systems出现在各种各样的领域,作为自然模型,用于从机器人到量子点的机器人测量。这种系统的分析能力是基本和实际的重要性,用于设计最佳控制法,稳定性的不稳定系统,并最小化输入 - 产出关系的设计。已经采用了借助于Lietheory的工具来建立BilinearSystems的可控性条件,最值得注意的发展是Lie代数等级条件(LARC)。然而,对于高维系统来说,LARC的应用可以是计算昂贵的。在本文中,我们提出了一种替代的和效率的代数方法来调查BilinearSystems的可控性。中心思想是将传染媒介字段的谎言括号操作映射到对称群体上的系统动力学的系统动态,使得可控性和可控子多个子可以通过置换周期进行配对。该方法进一步适用于在无向图中定义的系统的特征可控性,例如具有在状态之间的可调转换速率的代理和马尔可夫链之间的受控耦合的多种代理系统,这反过来揭示通过图形连接的可控性的图形。

著录项

  • 作者

    Wei Zhang; Jr-Shin Li;

  • 作者单位
  • 年度 2020
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号