首页> 外文OA文献 >Deep Learning for Hardware-Based Real-Time Fault Detection and Localization of All Electric Ship MVDC Power System
【2h】

Deep Learning for Hardware-Based Real-Time Fault Detection and Localization of All Electric Ship MVDC Power System

机译:基于硬件的实时故障检测和所有电船MVDC电力系统的深度学习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The tendency toward electrification of marine vessels has led the evolution of the all electric ship (AES). The harsh operating environment of the AES makes the shipboard power system (SPS) vulnerable, so a powerful monitoring system for fault detection and localization (FDL) is essential for safe navigation. We propose a machine learning based FDL method for monitoring the system condition with the problem of imbalanced training dataset. The generative adversarial network (GAN) comprising of deep convolutional neural networks was employed to synthesize numerous valid samples. Feature extraction and selection technologies were applied to time-series signals to reduce features for monitor training. Finally, the random forest (RF) model was trained using the augmented training dataset, combining real data with generated ones by GAN, to verify the capability of the GAN-RF based FDL method. Both real training and testing data were collected from the SPS model established in PSCAD/EMTDC. The results demonstrated that the monitor could distinguish different conditions in real-time with the help of hardware implementation on the FPGA and a 99% classification accuracy was achieved with excellent anti-noise capability.
机译:海洋船舶电气化的趋势导致了所有电船(AES)的演变。 AES的恶劣操作环境使船舶电力系统(SPS)易受攻击,因此有一个强大的故障检测和定位监控系统(FDL)对于安全导航至关重要。我们提出了一种基于机器学习的FDL方法,用于监控系统条件的训练数据集的问题。使用由深卷积神经网络的生成的对抗性网络(GaN)合成许多有效样品。特征提取和选择技术应用于时间序列信号,以减少监视器培训的特征。最后,随机森林(RF)模型使用增强训练数据集进行培训,将真实数据与GaN与生成的数据集合,以验证基于GaN-RF的FDL方法的能力。从PSCAD / EMTDC中建立的SPS模型收集了真正的训练和测试数据。结果表明,监测器可以在FPGA上的硬件实现的帮助下实时区分不同的条件,并且通过优异的抗噪声能力实现了99%的分类精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号