首页> 外文OA文献 >Herschel/PACS Spectroscopic Survey of Protostars in Orion: The Origin of Far-infrared CO Emission
【2h】

Herschel/PACS Spectroscopic Survey of Protostars in Orion: The Origin of Far-infrared CO Emission

机译:猎户座原恒星的Herschel / PACS光谱调查:远红外CO发射的起源

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present far-infrared (57-196 μm) spectra of 21 protostars in the Orion molecular clouds. These were obtained with the Photodetector Array Camera and Spectrometer (PACS) on board the Herschel Space observatory as part of the Herschel Orion Protostar Survey program. We analyzed the emission lines from rotational transitions of CO, involving rotational quantum numbers in the range J_(up) = 14-46, using PACS spectra extracted within a projected distance of ≾2000 AU centered on the protostar. The total luminosity of the CO lines observed with PACS (L_(CO)) is found to increase with increasing protostellar luminosity (L_(bol)). However, no significant correlation is found between L_(CO) and evolutionary indicators or envelope properties of the protostars such as bolometric temperature, T_(bol), or envelope density. The CO rotational (excitation) temperature implied by the line ratios increases with increasing rotational quantum number J, and at least 3–4 rotational temperature components are required to fit the observed rotational diagram in the PACS wavelength range. The rotational temperature components are remarkably invariant between protostars and show no dependence on L_(bol), T_(bol), or envelope density, implying that if the emitting gas is in local thermodynamic equilibrium, the CO emission must arise in multiple temperature components that remain independent of L_(bol) over two orders of magnitudes. The observed CO emission can also be modeled as arising from a single-temperature gas component or from a medium with a power-law temperature distribution; both of these require sub-thermally excited molecular gas at low densities (n(H_2) ≾ 10^6 cm^(–3)) and high temperatures (T≳2000 K). Our results suggest that the contribution from photodissociation regions, produced along the envelope cavity walls from UV-heating, is unlikely to be the dominant component of the CO emission observed with PACS. Instead, the "universality" of the rotational temperatures and the observed correlation between L_(CO) and L_(bol) can most easily be explained if the observed CO emission originates in shock-heated, hot (T≳2000 K), sub-thermally excited (n(H_2) ≾ 10^6 cm^(–3)) molecular gas. Post-shock gas at these densities is more likely to be found within the outflow cavities along the molecular outflow or along the cavity walls at radii ≳ several 100-1000 AU.
机译:我们提出了猎户座分子云中21个原恒星的远红外(57-196μm)光谱。这些是通过Herschel Orion Protostar Survey程序的一部分在Herschel太空天文台上使用光电探测器阵列照相机和光谱仪(PACS)获得的。我们使用以原恒星为中心的≾2000 AU的投影距离内提取的PACS光谱分析了CO旋转跃迁的发射谱线,涉及J_(up)= 14-46范围内的旋转量子数。发现用PACS观测到的CO线的总发光度(L_(CO))随着原恒星发光度(L_(bol))的增加而增加。但是,在L_(CO)与进化指标或原星的包膜特性(例如辐射热温度,T_(bol)或包膜密度)之间没有发现显着相关性。线比所暗示的CO旋转(激发)温度随旋转量子数J的增加而增加,并且至少需要3-4个旋转温度分量才能在PACS波长范围内拟合观察到的旋转图。旋转温度分量在原恒星之间显着不变,并且不依赖于L_(bol),T_(bol)或包络线密度,这意味着如果排放气体处于局部热力学平衡状态,则必须在多个温度分量中产生CO排放,在两个数量级上保持独立于L_(bol)。还可以将观测到的CO排放建模为源自单一温度的气体成分或具有幂律温度分布的介质。这些都需要在低密度(n(H_2)≾10 ^ 6 cm ^(– 3))和高温(T≳2000K)下进行亚热激发的分子气体。我们的结果表明,紫外线加热沿包膜腔壁产生的光解离区域的贡献不太可能是PACS观察到的CO排放的主要成分。取而代之的是,如果观察到的CO排放源于冲击加热的高温(T≳2000K),亚热源,则旋转温度的“通用性”以及所观察到的L_(CO)和L_(bol)之间的相关性最容易解释。热激发(n(H_2)≾10 ^ 6 cm ^(– 3))分子气体。在这样的密度下,震荡后的气体更有可能在分子出口或腔壁上以半径≳100-1000 AU的方向在流出腔内发现。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号