In the dual $L^{Phi^*}$ of a $Delta_2$-Orlicz space $L^Phi$, we show thata proper (resp. finite) convex function is lower semicontinuous (resp.continuous) for the Mackey topology $au(L^{Phi^*},L^Phi)$ if and only if oneach order interval $[-zeta,zeta]={xi: -zetaleq xileqzeta}$($zetain L^{Phi^*}$), it is lower semicontinuous (resp. continuous) for thetopology of convergence in probability. For this purpose, we provide thefollowing Koml'os type result: every norm bounded sequence $(xi_n)_n$ in$L^{Phi^*}$ admits a sequence of forward convex combinations$ar{xi}_ninmathrm{conv}(xi_n,xi_{n+1},...)$ such that$sup_n|ar{xi}_n|in L^{Phi^*}$ and $ar{xi}_n$ converges a.s.
展开▼
机译:在$ delta_2 $ -ORLICZ SPACE $ L ^ PHI $的双重$ l ^ { phi ^ *}。我们显示适当的(resp。有限)凸起功能是较低的半连续(RESP.CONTINUUL) mackey拓扑$ tau(l ^ { phi ^ *},l ^ phi)$如果any oneach订单间隔$ [ - zeta, zeta] = { xi: - zeta leq xi $($ zeta in l ^ { phi ^ *} $),它是较低的半连续(连续),用于概率收敛性。为此目的,我们提供了关注的Koml 'OS类型结果:每种常态序列$( xi_n)_n $ in $ l ^ { phi ^ *} $概述一系列前进凸组合$ bar { xi} _n in mathrm {conv}( xi_n, xi_ {n + 1},......)$,使得$ sup_n | bar { xi} _n | 在l ^ { phi ^ *} $和$ bar { xi} _n $收敛为
展开▼