首页> 外文OA文献 >Modeling kinetic partitioning of secondary organic aerosol and size distribution dynamics: representing effects of volatility, phase state, and particle-phase reaction
【2h】

Modeling kinetic partitioning of secondary organic aerosol and size distribution dynamics: representing effects of volatility, phase state, and particle-phase reaction

机译:模拟次级有机气溶胶的动力学分配和粒度分布动力学:代表挥发性,相态和颗粒相反应的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper describes and evaluates a new framework for modeling kinetic gas-particle partitioning of secondary organic aerosol (SOA) that takes into account diffusion and chemical reaction within the particle phase. The framework uses a combination of (a) an analytical quasi-steady-state treatment for the diffusion–reaction process within the particle phase for fast-reacting organic solutes, and (b) a two-film theory approach for slow- and nonreacting solutes. The framework is amenable for use in regional and global atmospheric models, although it currently awaits specification of the various gas- and particle-phase chemistries and the related physicochemical properties that are important for SOA formation. Here, the new framework is implemented in the computationally efficient Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) to investigate the competitive growth dynamics of the Aitken and accumulation mode particles. Results show that the timescale of SOA partitioning and the associated size distribution dynamics depend on the complex interplay between organic solute volatility, particle-phase bulk diffusivity, and particle-phase reactivity (as exemplified by a pseudo-first-order reaction rate constant), each of which can vary over several orders of magnitude. In general, the timescale of SOA partitioning increases with increase in volatility and decrease in bulk diffusivity and rate constant. At the same time, the shape of the aerosol size distribution displays appreciable narrowing with decrease in volatility and bulk diffusivity and increase in rate constant. A proper representation of these physicochemical processes and parameters is needed in the next generation models to reliably predict not only the total SOA mass, but also its composition- and number-diameter distributions, all of which together determine the overall optical and cloud-nucleating properties.
机译:本文描述并评估了一种新的框架,该框架用于对次级有机气溶胶(SOA)的动态气体-颗粒分配进行建模,其中考虑了颗粒相内的扩散和化学反应。该框架结合了(a)对于快速反应的有机溶质在粒子相内进行扩散反应过程的分析准稳态处理,以及(b)对于慢速和非反应溶质的两膜理论方法。该框架适合在区域和全球大气模型中使用,尽管目前正在等待各种气相和颗粒相化学以及对SOA形成至关重要的相关物理化学特性的规范。在此,新框架在计算效率高的模拟气溶胶相互作用和化学模型(MOSAIC)中实现,以研究Aitken和累积模式颗粒的竞争性增长动力学。结果表明,SOA分配的时间尺度和相关的尺寸分布动力学取决于有机溶质挥发性,颗粒相本体扩散率和颗粒相反应性之间的复杂相互作用(以伪一级反应速率常数为例),每个都可以在几个数量级上变化。通常,SOA分区的时间尺度随挥发性的增加而增加,体扩散率和速率常数减小。同时,随着挥发性和体积扩散率的降低以及速率常数的增加,气溶胶尺寸分布的形状显示出明显的变窄。在下一代模型中,需要正确表示这些理化过程和参数,以便可靠地预测总的SOA质量,并可靠地预测其SOA和数径分布,所有这些因素共同决定了总体的光学和云成核特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号