首页> 外文OA文献 >High frequency oscillatory flows in a slightly rarefied gas according to the Boltzmann–BGK equation
【2h】

High frequency oscillatory flows in a slightly rarefied gas according to the Boltzmann–BGK equation

机译:根据玻耳兹曼–BGK方程,高频振荡流在稀有气体中流动

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Boltzmann equation provides a rigorous theoretical framework to study dilute gas flows at arbitrary degrees of rarefaction. Asymptotic methods have been applied to steady flows, enabling the development of analytical formulae. For unsteady (oscillatory) flows, two important limits have been studied: (i) at low oscillation frequency and small mean free path, slip models have been derived; and (ii) at high oscillation frequency and large mean free path, the leading-order dynamics are free-molecular. In this article, the complementary case of small mean free path and high oscillation frequency is examined in detail. All walls are solid and of arbitrary smooth shape. We perform a matched asymptotic expansion of the unsteady linearized Boltzmann–BGK equation in the small parameter ν/ω, where ν is the collision frequency of gas particles and ω is the characteristic oscillation frequency of the flow. Critically, an algebraic expression is derived for the perturbed mass distribution function throughout the bulk of the gas away from any walls, at all orders in the frequency ratio ν/ω. This is supplemented by a boundary layer correction defined by a set of first-order differential equations. This system is solved explicitly and in complete generality. We thus provide analytical expressions up to first order in the frequency ratio, for the density, temperature, mean velocity and stress tensor of the gas, in terms of the temperature and mean velocity of the wall, and the applied body force. In stark contrast to other asymptotic regimes, these explicit formulae eliminate the need to solve a differential equation for a body of arbitrary geometry. To illustrate the utility of these results, we study the oscillatory thermal creep problem for which we find a tangential boundary layer flow arises at first order in the frequency ratio.
机译:玻尔兹曼方程提供了严格的理论框架,以研究稀疏度任意情况下的稀薄气流。渐近方法已应用于稳定流量,从而能够开发分析公式。对于不稳定(振荡)流,已经研究了两个重要的限制:(i)在低振荡频率和小的平均自由程下,已经推导了滑移模型; (ii)在高振荡频率和大平均自由程时,前导动力学是自由分子。在本文中,将详细研究平均自由程较小和振荡频率较高的互补情况。所有墙都是坚固的,具有任意光滑的形状。我们在小参数ν/ω中执行非定常线性化Boltzmann-BGK方程的匹配渐近展开,其中ν是气体颗粒的碰撞频率,而ω是流动的特征振荡频率。至关重要的是,以频率比ν/ω的所有阶数,导出了远离任何壁的整个气体主体中的扰动质量分布函数的代数表达式。这是由一组一阶微分方程定义的边界层校正补充的。该系统已明确且完全通用地解决。因此,我们根据气体的密度,温度,平均速度和应力张量,根据壁的温度和平均速度以及所施加的体力,提供了频率比的一阶解析表达式。与其他渐近形式形成鲜明对比的是,这些显式公式消除了为任意几何体求解微分方程的需要。为了说明这些结果的实用性,我们研究了振荡热蠕变问题,针对该问题,我们发现切向边界层流以频率比一阶出现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号