首页> 外文OA文献 >Upper Bounds for Newton’s Method on Monotone Polynomial Systems, and P-Time Model Checking of Probabilistic One-Counter Automata
【2h】

Upper Bounds for Newton’s Method on Monotone Polynomial Systems, and P-Time Model Checking of Probabilistic One-Counter Automata

机译:牛顿的单调多项式系统方法的上限,以及概率单反自动机的P-Time模型检查

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A central computational problem for analyzing and model checking variousclasses of infinite-state recursive probabilistic systems (includingquasi-birth-death processes, multi-type branching processes, stochasticcontext-free grammars, probabilistic pushdown automata and recursive Markovchains) is the computation of {em termination probabilities}, and computingthese probabilities in turn boils down to computing the {em least fixed point}(LFP) solution of a corresponding {em monotone polynomial system} (MPS) ofequations, denoted x=P(x). It was shown by Etessami & Yannakakis that a decomposed variant of Newton'smethod converges monotonically to the LFP solution for any MPS that has anon-negative solution. Subsequently, Esparza, Kiefer, & Luttenberger obtainedupper bounds on the convergence rate of Newton's method for certain classes ofMPSs. More recently, better upper bounds have been obtained for special classesof MPSs. However, prior to this paper, for arbitrary (not necessarilystrongly-connected) MPSs, no upper bounds at all were known on the convergencerate of Newton's method as a function of the encoding size |P| of the inputMPS, x=P(x). In this paper we provide worst-case upper bounds, as a function of both theinput encoding size |P|, and epsilon > 0, on the number of iterations requiredfor decomposed Newton's method (even with rounding) to converge within additiveerror epsilon > 0 of q^*, for any MPS with LFP solution q^*. Our upper boundsare essentially optimal in terms of several important parameters. Using our upper bounds, and building on prior work, we obtain the firstP-time algorithm (in the standard Turing model of computation) for quantitativemodel checking, to within desired precision, of discrete-time QBDs and(equivalently) probabilistic 1-counter automata, with respect to any (fixed)omega-regular or LTL property.
机译:用于分析和模型检查无限状态递归概率系统的各种计算的中央计算问题(包括Quasi生脱发过程,多型分支过程,随机无需语法,概率下推自动机和递归Markovchains)是{ em的计算终止概率},并且计算逐行逐渐淘汰以计算相应{ EM单调多项式系统}(MPS)的{ EM最小固定点}(LFP)解决方案,表示为x = p(x)。它由EtesSami&Yannakakis显示,牛顿'Smethod的分解变体单调会聚到具有Anon阴性解决方案的任何MPS的LFP解决方案。随后,Esparza,Kiefer,&Luttenberger获得了对某些类别的牛顿方法的收敛速度的界限。最近,已经获得了MPSS的特殊类别的更好的上限。然而,在本文之前,对于任意(不必要连接的)MPS,在牛顿方法的函数中没有任何上限作为编码尺寸的函数,所以P | Inputmps,x = p(x)。在本文中,我们提供最坏情况的上限,作为inpput编码尺寸的函数| P |和epsilon> 0,在分解牛顿的方法(甚至是舍入)所需的迭代次数中,以在AddityError epsilon中收敛于Q ^ *,对于带有LFP解决方案的任何MPS Q ^ *。我们的上阵容在几个重要参数方面基本上是最佳的。使用我们的上限和建立在现有工作时,我们获得了用于量化QBD和(等效)概率1-COMPTURATA的离散时间QBD和(等效)概率1-COMPT Automata的第一算法(在计算标准图规模化模型)中获得了第一算法(在计算的标准图规模)中,关于任何(固定)ω-常规或LTL属性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号