首页> 外文OA文献 >Fault-tolerant logical gates in quantum error-correcting codes
【2h】

Fault-tolerant logical gates in quantum error-correcting codes

机译:量子纠错码中的容错逻辑门

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recently, S. Bravyi and R. König [Phys. Rev. Lett. 110, 170503 (2013)] have shown that there is a trade-off between fault-tolerantly implementable logical gates and geometric locality of stabilizer codes. They consider locality-preserving operations which are implemented by a constant-depth geometrically local circuit and are thus fault tolerant by construction. In particular, they show that, for local stabilizer codes in D spatial dimensions, locality-preserving gates are restricted to a set of unitary gates known as the Dth level of the Clifford hierarchy. In this paper, we explore this idea further by providing several extensions and applications of their characterization to qubit stabilizer and subsystem codes. First, we present a no-go theorem for self-correcting quantum memory. Namely, we prove that a three-dimensional stabilizer Hamiltonian with a locality-preserving implementation of a non-Clifford gate cannot have a macroscopic energy barrier. This result implies that non-Clifford gates do not admit such implementations in Haah's cubic code and Michnicki's welded code. Second, we prove that the code distance of a D-dimensional local stabilizer code with a nontrivial locality-preserving mth-level Clifford logical gate is upper bounded by O(L^(D+1−m)). For codes with non-Clifford gates (m>2), this improves the previous best bound by S. Bravyi and B. Terhal [New. J. Phys. 11, 043029 (2009)]. Topological color codes, introduced by H. Bombin and M. A. Martin-Delgado [Phys. Rev. Lett. 97, 180501 (2006); Phys. Rev. Lett. 98, 160502 (2007); Phys. Rev. B 75, 075103 (2007)], saturate the bound for m=D. Third, we prove that the qubit erasure threshold for codes with a nontrivial transversal mth-level Clifford logical gate is upper bounded by 1/m. This implies that no family of fault-tolerant codes with transversal gates in increasing level of the Clifford hierarchy may exist. This result applies to arbitrary stabilizer and subsystem codes and is not restricted to geometrically local codes. Fourth, we extend the result of Bravyi and König to subsystem codes. Unlike stabilizer codes, the so-called union lemma does not apply to subsystem codes. This problem is avoided by assuming the presence of an error threshold in a subsystem code, and a conclusion analogous to that of Bravyi and König is recovered.
机译:最近,S。Bravyi和R.König[Phys。牧师110,170503(2013)]已经表明,在容错可实现的逻辑门和稳定器代码的几何局部性之间需要权衡。他们考虑了通过恒定深度的几何局部电路实现的局部性保存操作,因此在构造上可以容错。特别是,他们表明,对于D个空间维度上的局部稳定器代码,保留位置的门仅限于一组单一门,这些门被称为Clifford层次结构的Dth级。在本文中,我们通过将其表征的几种扩展和应用扩展到qubit稳定器和子系统代码,进一步探索了这一思想。首先,我们提出了一种自校正量子记忆的不定理。即,我们证明了具有非克利福德门的局部性实现的三维稳定器哈密顿量不能具有宏观的能垒。此结果表明,非Clifford门不接受Haah立方代码和Michnicki焊接代码中的此类实现。其次,我们证明具有不平凡的局部性第m级Clifford逻辑门的D维局部稳定器代码的代码距离由O(L ^(D + 1-m))界定。对于具有非Clifford门(m> 2)的代码,这改善了S. Bravyi和B. Terhal先前的最佳界限[New。 J.物理11,043029(2009)]。拓扑颜色代码,由H. Bombin和M. A. Martin-Delgado [Phys。牧师97,180501(2006);物理牧师98,160502(2007);物理Rev.B 75,075103(2007)],使m = D的界限饱和。第三,我们证明具有非平凡的第m级Clifford逻辑门的代码的qubit擦除阈值上限为1 / m。这意味着在Clifford层次结构中,不存在带有横向门的容错代码家族。此结果适用于任意稳定器和子系统代码,并且不限于几何局部代码。第四,我们将Bravyi和König的结果扩展到子系统代码。与稳定器代码不同,所谓的联合引理不适用于子系统代码。通过假设子系统代码中存在错误阈值,可以避免此问题,并且可以得出类似于Bravyi和König的结论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号