首页> 外文OA文献 >On the Ratio of Periods of the Fundamental Harmonic and First Overtone of Magnetic Tube Kink Oscillations
【2h】

On the Ratio of Periods of the Fundamental Harmonic and First Overtone of Magnetic Tube Kink Oscillations

机译:关于磁管扭结振动的基本谐波和首先泛孔的比例

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We study kink oscillations of thin magnetic tubes. We assume that the density inside and outside the tube (and possibly also the cross-section radius) can vary along the tube. This variation is assumed to be of such a form that the kink speed is symmetric with respect to the tube centre and varies monotonically from the tube ends to the tube centre. Then we prove a theorem stating that the ratio of periods of the fundamental mode and first overtone is a monotonically increasing function of the ratio of the kink speed at the tube centre and the tube ends. In particular, it follows from this theorem that the period ratio is lower than two when the kink speed increases from the tube ends to its centre, while it is higher than two when the kink speed decreases from the tube ends to its centre. The first case is typical for non-expanding coronal magnetic loops, and the second for prominence threads. We apply the general results to particular problems. First we consider kink oscillations of coronal magnetic loops. We prove that, under reasonable assumptions, the ratio of the fundamental period to the first overtone is lower than two and decreases when the loop size increases. The second problem concerns kink oscillations of prominence threads. We consider three internal density profiles: generalised parabolic, Gaussian, and Lorentzian. Each of these profiles contain the parameter (Formula presented.) that is responsible for its sharpness. We calculate the dependence of the period ratio on the ratio of the mean to the maximum density. For all considered values of (Formula presented.) we find that a formula relating the period ratio and the ratio of the mean and maximum density suggested by Soler, Goossens, and Ballester (Astron. Astrophys.575, A123, 2015) gives a sufficiently good approximation to the exact dependence.
机译:我们研究了细电磁管的扭结振荡。我们假设管子内外的密度(可能还有横截面半径)可以沿管子变化。假定这种变化具有扭折速度相对于管中心对称并且从管端到管中心单调变化的形式。然后,我们证明了一个定理,该定理指出基本模式和第一泛音的周期之比是管中心和管端的扭结速度之比的单调递增函数。特别地,从该定理得出,当扭结速度从管端到中心增加时,周期比小于2,而当扭结速度从管端到中心减小时,周期比大于2。第一种情况通常用于非膨胀冠状磁环,第二种情况用于突出螺纹。我们将一般结果应用于特定问题。首先,我们考虑日冕磁环的扭结振荡。我们证明,在合理的假设下,基本周期与第一个泛音的比率小于2,并且随着环路大小的增加而减小。第二个问题涉及突出线的扭结振荡。我们考虑了三个内部密度分布:广义抛物线形,高斯形和洛伦兹形。这些配置文件中的每一个都包含负责其清晰度的参数(显示的公式)。我们计算周期比对均值与最大密度之比的依赖性。对于所有考虑的(公式表示)的值,我们发现由Soler,Goossens和Ballester建议的有关周期比率与平均密度和最大密度之比的公式(Astron。Astrophys.575,A123,2015)精确依赖的良好近似。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号