首页> 外文OA文献 >Generalization of the Activated Complex Theory of Reaction Rates. I. Quantum Mechanical Treatment
【2h】

Generalization of the Activated Complex Theory of Reaction Rates. I. Quantum Mechanical Treatment

机译:反应速率活化复合理论的推广。一,量子力学处理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In its usual form activated complex theory assumes a quasiequilibrium between reactants and activated complex, a separable reaction coordinate, a Cartesian reaction coordinate, and an absence of interaction of rotation with internal motion in the complex. In the present paper a rate expression is derived without introducing the Cartesian assumption. The expression bears a formal resemblance to the usual one and reduces to it when the added assumptions of the latter are introduced. The new equation for the transmission coefficient contains internal centrifugal terms. The fourth assumption can also be weakened and a rotational interaction included in the formalism. In applications of the rate equation use can be made of the recent finding that in the immediate vicinity of a saddle point or a minimum, a potential energy surface can be imitated in some major topographical respects by a surface permitting separation of variables. The separated wave equation for the reaction coordinate is then curvilinear because of the usual curvature of the path of steepest ascent to the saddle point. Calculations of transmission coefficients and rates can be made and compared with those obtainable from the usual one‐dimensional Cartesian‐like calculations on the one hand and with some based on the numerical integration of the n‐dimensional Schrödinger equation on the other. An application to a common three‐center problem is discussed.
机译:活化配合物理论以其通常的形式假设反应物和活化配合物之间具有准平衡,可分离的反应坐标,笛卡尔反应坐标以及在配合物中不存在旋转与内部运动的相互作用。在本文中,无需引入笛卡尔假设即可得出速率表达式。该表达形式与通常的表达形式非常相似,当引入后者的附加假设时,该表达形式又简化为通常的表达形式。传递系数的新公式包含内部离心项。第四个假设也可以被削弱,形式主义中包括轮换互动。在速率方程的应用中,可以利用最近的发现,即在鞍点或最小值附近,势能表面可以通过允许变量分离的表面在某些主要地形方面被模仿。由于最陡峭上升到鞍点的路径通常曲率,因此反应坐标的分离波动方程是曲线的。一方面可以进行传输系数和速率的计算,并且可以与通常的一维笛卡尔式计算获得的传输系数和速率进行比较,另一方面,可以基于n维Schrödinger方程的数值积分进行计算。讨论了一个常见的三中心问题的应用。

著录项

  • 作者

    Marcus R. A.;

  • 作者单位
  • 年度 1964
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号