首页> 外文OA文献 >Active Sites in Sn-Beta for Glucose Isomerization to Fructose and Epimerization to Mannose
【2h】

Active Sites in Sn-Beta for Glucose Isomerization to Fructose and Epimerization to Mannose

机译:Sn-Beta中的活性位点用于葡萄糖异构化为果糖和差向异构化为甘露糖

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Framework Lewis acidic tin sites in hydrophobic, pure-silica molecular sieves with the zeolite beta topology (Sn-Beta) have been reported previously to predominantly catalyze glucose−fructose isomerization via 1,2 intramolecular hydride shift in water and glucose–mannose epimerization via 1,2 intramolecular carbon shift in methanol. Here, we show that alkali-free Sn-Beta predominantly isomerizes glucose to fructose via 1,2 intramolecular hydride shift in both water and methanol. Increasing extents of postsynthetic Na+ exchange onto Sn-Beta, however, progressively shifts the reaction pathway toward glucose–mannose epimerization via 1,2 intramolecular carbon shift. Na^+ remains exchanged onto silanol groups proximal to Sn centers during reaction in methanol solvent, leading to nearly exclusive selectivity toward epimerization. In contrast, decationation occurs with increasing reaction time in aqueous solvent and gradually shifts the reaction selectivity to isomerization at the expense of epimerization. Decationation and the concomitant selectivity changes are mitigated by the addition of NaCl to the aqueous reaction solution. Preadsorption of ammonia onto Sn-Beta leads to near complete suppression of infrared and ^(119)Sn nuclear magnetic resonance spectroscopic signatures attributed to open Sn sites and of glucose−fructose isomerization pathways in water and methanol. These data provide evidence that Lewis acidic open Sn sites with either proximal silanol groups or Na-exchanged silanol groups are respectively the active sites for glucose–fructose isomerization and glucose–mannose epimerization.
机译:先前已经报道了具有沸石β拓扑结构(Sn-Beta)的疏水性纯二氧化硅分子筛中的骨架Lewis酸性锡位点主要通过1,2分子内氢化物在水中的转移和葡萄糖-甘露糖差向异构化(通过1)催化葡萄糖-果糖异构化。 ,2在甲醇中的分子内碳转移。在这里,我们显示了无碱Sn-Beta主要通过在水和甲醇中的1,2分子内氢化物转移将葡萄糖异构化为果糖。然而,合成后Na +交换到Sn-Beta上的程度不断增加,通过1,2分子内碳转移,使反应途径逐渐向葡萄糖-甘露糖差向异构转变。在甲醇溶剂中反应期间,Na +保持交换到接近锡中心的硅烷醇基团上,导致差向异构化的几乎唯一的选择性。相反,随着在水性溶剂中反应时间的增加,发生阳离子化反应,并以差向异构化为代价逐渐将反应选择性转变为异构化。通过向反应水溶液中添加NaCl,可以减轻分馏和伴随的选择性变化。氨在Sn-Beta上的预先吸附导致几乎完全抑制红外和^(119)Sn核磁共振波谱特征,这归因于水和甲醇中的开放Sn部位以及葡萄糖-果糖异构化途径。这些数据提供了具有近端硅烷醇基团或Na交换硅烷醇基团的Lewis酸性开放Sn位点分别是葡萄糖-果糖异构化和葡萄糖-甘露糖差向异构作用的活性位点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号