首页> 外文OA文献 >Dynamic Panel Surveillance of COVID-19 Transmission in the United States to Inform Health Policy: Observational Statistical Study
【2h】

Dynamic Panel Surveillance of COVID-19 Transmission in the United States to Inform Health Policy: Observational Statistical Study

机译:Covid-19传播动态面板监控美国在美国提供信息:观察统计研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

BackgroundThe Great COVID-19 Shutdown aimed to eliminate or slow the spread of SARS-CoV-2, the virus that causes COVID-19. The United States has no national policy, leaving states to independently implement public health guidelines that are predicated on a sustained decline in COVID-19 cases. Operationalization of “sustained decline” varies by state and county. Existing models of COVID-19 transmission rely on parameters such as case estimates or R0 and are dependent on intensive data collection efforts. Static statistical models do not capture all of the relevant dynamics required to measure sustained declines. Moreover, existing COVID-19 models use data that are subject to significant measurement error and contamination. ObjectiveThis study will generate novel metrics of speed, acceleration, jerk, and 7-day lag in the speed of COVID-19 transmission using state government tallies of SARS-CoV-2 infections, including state-level dynamics of SARS-CoV-2 infections. This study provides the prototype for a global surveillance system to inform public health practice, including novel standardized metrics of COVID-19 transmission, for use in combination with traditional surveillance tools. MethodsDynamic panel data models were estimated with the Arellano-Bond estimator using the generalized method of moments. This statistical technique allows for the control of a variety of deficiencies in the existing data. Tests of the validity of the model and statistical techniques were applied. ResultsThe statistical approach was validated based on the regression results, which determined recent changes in the pattern of infection. During the weeks of August 17-23 and August 24-30, 2020, there were substantial regional differences in the evolution of the US pandemic. Census regions 1 and 2 were relatively quiet with a small but significant persistence effect that remained relatively unchanged from the prior 2 weeks. Census region 3 was sensitive to the number of tests administered, with a high constant rate of cases. A weekly special analysis showed that these results were driven by states with a high number of positive test reports from universities. Census region 4 had a high constant number of cases and a significantly increased persistence effect during the week of August 24-30. This change represents an increase in the transmission model R value for that week and is consistent with a re-emergence of the pandemic. ConclusionsReopening the United States comes with three certainties: (1) the “social” end of the pandemic and reopening are going to occur before the “medical” end even while the pandemic is growing. We need improved standardized surveillance techniques to inform leaders when it is safe to open sections of the country; (2) varying public health policies and guidelines unnecessarily result in varying degrees of transmission and outbreaks; and (3) even those states most successful in containing the pandemic continue to see a small but constant stream of new cases daily.
机译:背景技术伟大的Covid-19关闭旨在消除或减缓SARS-COV-2的扩散,导致Covid-19的病毒。美国没有国家政策,让各国独立实施预先在科夫德-19案件持续下降的公共卫生指导方针。国家和县的“持续下降”的运作变化。 Covid-19传输的现有模型依赖于诸如案例估计或R0的参数,并且取决于密集的数据收集工作。静态统计模型不会捕获衡量持续下滑所需的所有相关动态。此外,现有的Covid-19模型使用受显着测量误差和污染的数据。客观的研究将在Covid-19传播速度使用国家政府的SARS-COV-2感染的速度产生新的速度,加速,混蛋和7天滞后的新颖度量,包括SARS-COV-2感染的状态水平动态。本研究为全球监控系统提供了通知公共卫生实践的原型,包括Covid-19传输的新型标准化指标,与传统监控工具结合使用。方法使用普通的时刻方法估计了Arellano-Bond估计估计数据模型。这种统计技术允许控制现有数据中的各种缺陷。应用了模型的有效性和统计技术的测试。结果基于回归结果验证了统计方法,该结果确定了最近感染模式的变化。在8月17日至23日和8月24日至30日,2020年8月24日,美国大流行的演变存在大量的区域差异。人口普查区1和2均相对安静,小但显着的持续效果,从前两周仍然相对不变。人口普查区3对施用的试验数量敏感,病例高常数率。每周特别分析表明,这些结果由大学的肯定考试报告大量的态度驱动。人口普查区4在8月24日至30日的一周内具有高常数恒定的病例和显着增加的持续效应。该变化表示该周的传输模型R值的增加,并与大流行的重新出现一致。结论美国有三种确定性:(1)即使大流行发展也将在“医疗”结束之前发生大流行和重新开放的“社会”结束。我们需要改进的标准化监控技术,以便在安全开放国家的安全时通知领导者; (2)不必要地不同的公共卫生政策和指南导致不同程度的传播和爆发; (3)即使是那些州含有大流行的国家也在继续看到每天的小但不断恒定的新病例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号