首页> 外文OA文献 >A Parallel Community Structure Mining Method in Big Social Networks
【2h】

A Parallel Community Structure Mining Method in Big Social Networks

机译:大社交网络中的平行群落结构挖掘方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Community structure plays a key role in analyzing network features and helping people to dig out valuable hidden information. However, how to discover the hidden community structures is one of the biggest challenges in social network analysis, especially when the network size swells to a high level. Infomap is a top-class algorithm in nonoverlapping community structure detection. However, it is designed for single processor. When tackling large networks, its limited scalability makes it less effective in fully utilizing server resources. In this paper, based on infomap, we develop a scalable parallel nonoverlapping community detection method, Pinfomr (parallel Infomap with MapReduce), which utilizes the MapReduce framework to solve the two problems. Experiments on artificial networks and real datasets show that our parallel method has satisfying performance and scalability.
机译:社区结构在分析网络功能方面发挥着关键作用,帮助人们挖掘有价值的隐藏信息。然而,如何发现隐藏的社区结构是社会网络分析中最大的挑战之一,特别是当网络尺寸膨胀到高水平时。 Infomap是一个在非传播社区结构检测中的顶级算法。但是,它专为单个处理器而设计。在解决大型网络时,其有限的可伸缩性使得在充分利用服务器资源方面取得更少有效。在本文中,基于Infomap,我们开发了一个可扩展的并行非传递群落检测方法,Pinfomr(与MapReduce并行Infomap),利用MapReduce框架来解决两个问题。人造网络和实际数据集的实验表明,我们的并联方法具有满足性能和可扩展性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号