首页> 外文期刊>Mathematical Problems in Engineering >A Parallel Community Structure Mining Method in Big Social Networks
【24h】

A Parallel Community Structure Mining Method in Big Social Networks

机译:大型社交网络中的并行社区结构挖掘方法

获取原文
获取原文并翻译 | 示例

摘要

Community structure plays a key role in analyzing network features and helping people to dig out valuable hidden information. However, how to discover the hidden community structures is one of the biggest challenges in social network analysis, especially when the network size swells to a high level. Infomap is a top-class algorithm in nonoverlapping community structure detection. However, it is designed for single processor. When tackling large networks, its limited scalability makes it less effective in fully utilizing server resources. In this paper, based on infomap, we develop a scalable parallel nonoverlapping community detection method, Pinfomr (parallel Infomap with MapReduce), which utilizes the MapReduce framework to solve the two problems. Experiments on artificial networks and real datasets show that our parallel method has satisfying performance and scalability.
机译:社区结构在分析网络功能并帮助人们挖掘有价值的隐藏信息方面发挥着关键作用。但是,如何发现隐藏的社区结构是社交网络分析中的最大挑战之一,特别是当网络规模膨胀到很高水平时。 Infomap是非重叠社区结构检测中的顶级算法。但是,它是为单处理器设计的。在处理大型网络时,其有限的可伸缩性使其在充分利用服务器资源方面效率较低。在本文中,我们基于infomap,开发了一种可扩展的并行不重叠社区检测方法Pinfomr(带有MapReduce的并行Infomap),该方法利用MapReduce框架解决了两个问题。在人工网络和真实数据集上的实验表明,我们的并行方法具有令人满意的性能和可伸缩性。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2015年第7期|934301.1-934301.13|共13页
  • 作者单位

    Univ Illinois, Dept Comp Sci, Chicago, IL 60607 USA.;

    Univ Illinois, Dept Comp Sci, Chicago, IL 60607 USA.;

    Natl Univ Def Technol, Coll Comp, Changsha 410073, Hunan, Peoples R China.;

    Natl Univ Def Technol, Coll Comp, Changsha 410073, Hunan, Peoples R China.;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号