Various aspects of single-phased burst-error-correcting array codes are explored. These codes are composed of two-dimensional arrays with row and column parities with a diagonally cyclic readout order; they are capable of correcting a single burst error along one diagonal. Optimal codeword sizes are found to have dimensions n1×n2 such that n2 is the smallest prime number larger than n1. These codes are capable of reaching the Singleton bound. A new type of error, approximate errors, is defined; in q-ary applications, these errors cause data to be slightly corrupted and therefore still close to the true data level. Phased burst array codes can be tailored to correct these codes with even higher rates than before
展开▼