首页> 外文期刊>IEEE Transactions on Information Theory >New array codes for multiple phased burst correction
【24h】

New array codes for multiple phased burst correction

机译:用于多相突发校正的新阵列代码

获取原文
获取原文并翻译 | 示例

摘要

An optimal family of array codes over GF(q) for correcting multiple phased burst errors and erasures, where each phased burst corresponds to an erroneous or erased column in a code array, is introduced. As for erasures, these array codes have an efficient decoding algorithm which avoids multiplications (or divisions) over extension fields, replacing these operations with cyclic shifts of vectors over GF(q). The erasure decoding algorithm can be adapted easily to handle single column errors as well. The codes are characterized geometrically by means of parity constraints along certain diagonal lines in each code array, thus generalizing a previously known construction for the special case of two erasures. Algebraically, they can be interpreted as Reed-Solomon codes. When q is primitive in GF(q), the resulting codes become (conventional) Reed-Solomon codes of length P over GF(q/sup p-1/), in which case the new erasure decoding technique can be incorporated into the Berlekamp-Massey algorithm, yielding a faster way to compute the values of any prescribed number of errors.
机译:引入了用于校正多个相位突发错误和擦除的GF(q)上的最佳阵列代码家族,其中每个相位突发对应于代码阵列中的错误或已擦除列。至于擦除,这些数组代码具有有效的解码算法,可避免扩展字段上的乘法(或除法),而用GF(q)上的矢量循环移位来代替这些运算。擦除解码算法也可以轻松调整,以处理单列错误。通过沿着每个代码阵列中的某些对角线的奇偶校验约束对代码进行几何表征,从而针对两次擦除的特殊情况归纳了先前已知的构造。从代数上讲,它们可以解释为里德-所罗门代码。当q在GF(q)中是原始的时,生成的代码将成为(常规)长度为GF(q / sup p-1 /)的Reed-Solomon码,在这种情况下,可以将新的纠删解码技术合并到Berlekamp中-Massey算法,提供了一种更快的方法来计算任何规定数量的错误的值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号