首页> 外文OA文献 >Quantitative Nonlinear Analysis of Autocatalytic Pathways with Applications to Glycolysis
【2h】

Quantitative Nonlinear Analysis of Autocatalytic Pathways with Applications to Glycolysis

机译:自催化途径的定量非线性分析及其在糖酵解中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Autocatalytic pathways are frequently encountered in biological networks. One such pathway, the glycolyticudpathway, is of special importance and has been studied extensively. Using tools from linear systems theory, our previous work on a simple two dimensional model of glycolysis demonstrated that autocatalysis can aggravate control performance and contribute to instability. Here, we expand this work and study properties of nonlinear autocatalytic pathway models (of which glycolysis is an example). Changes in the concentration of metabolites and catalyzing enzymes during the lifetime of the cell can perturb the system from the nominal operating point of the pathway. We investigate effects of such perturbationsudthrough the estimation of invariant subsets of the region ofudattraction around nominal operating conditions (i.e., a measure of the set of perturbations from which the cell recovers). Numerical experiments demonstrate that systems that are robust with respect to perturbations in parameter space have easily "verifiable" region of attraction properties in terms of proof complexity.
机译:在生物网络中经常遇到自催化途径。一种这样的途径,即糖酵解去途径,具有特别的重要性,并且已经被广泛研究。使用线性系统理论的工具,我们先前在简单的二维糖酵解模型上的研究表明,自动催化作用会加重控制性能并导致不稳定。在这里,我们扩展了这项工作,并研究了非线性自催化途径模型(以糖酵解为例)的性质。在细胞的生命周期内,代谢产物和催化酶浓度的变化会干扰该系统的正常工作点。我们通过估计正常工作条件附近的干扰区域的不变子集来研究此类干扰的影响(即,对从中恢复的一组干扰的度量)。数值实验表明,对于参数空间中的扰动具有鲁棒性的系统在证明复杂性方面具有易于“验证”的吸引特性区域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号