首页> 外文OA文献 >Broad Dataset and Methods for Counting and Localization of On-Ear Corn Kernels
【2h】

Broad Dataset and Methods for Counting and Localization of On-Ear Corn Kernels

机译:广泛的数据集和用于耳耳内核的计数和定位方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Crop monitoring and yield prediction are central to management decisions for farmers. One key task is counting the number of kernels on an ear of corn to estimate yield in a field. As ears of corn can easily have 400–900 kernels, manual counting is unrealistic; traditionally, growers have approximated the number of kernels on an ear of corn through a mixture of counting and estimation. With the success of deep learning, these human estimates can now be replaced with more accurate machine learning models, many of which are efficient enough to run on a mobile device. Although a conceptually simple task, the counting and localization of hundreds of instances in an image is challenging for many image detection algorithms which struggle when objects are small in size and large in number. We compare different detection-based frameworks, Faster R-CNN, YOLO, and density-estimation approaches for on-ear corn kernel counting and localization. In addition to the YOLOv5 model which is accurate and edge-deployable, our density-estimation approach produces high-quality results, is lightweight enough for edge deployment, and maintains its computational efficiency independent of the number of kernels in the image. Additionally, we seek to standardize and broaden this line of work through the release of a challenging dataset with high-quality, multi-class segmentation masks. This dataset firstly enables quantitative comparison of approaches within the kernel counting application space and secondly promotes further research in transfer learning and domain adaptation, large count segmentation methods, and edge deployment methods.
机译:作物监测和产量预测是农民管理决策的核心。一个关键任务正在计算玉米耳朵上的内核数量,以估计场中的产量。由于玉米的耳朵很容易有400-900粒,手动计数是不现实的;传统上,种植者通过计数和估计的混合物近似于玉米耳朵上的粒数。随着深度学习的成功,这些人类估计现在可以用更准确的机器学习模型代替,其中许多是在移动设备上运行的有效。虽然概念简单的任务,但图像中数百个实例的计数和本地化是对许多图像检测算法有挑战性,当物体尺寸小并且数量大的尺寸小时奋斗。我们比较不同的检测框架,更快的R-CNN,YOLO和密度估计用于耳核核心计数和定位的密度估计方法。除了准确和边缘可部署的yolov5模型外,我们的密度估计方法还产生高质量的结果,这对于边缘部署的重量轻,并保持其计算效率,无关,无关地保持图像中的内核数量。此外,我们通过释放具有高质量的多级分割面具的具有挑战性的数据集来规范和拓宽这一行。此数据集首先使内核计数应用空间内的方法的定量比较,其次促进转移学习和域适配的进一步研究,大计分段方法和边缘部署方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号