首页> 外文OA文献 >Runtime Detection Framework for Android Malware
【2h】

Runtime Detection Framework for Android Malware

机译:Android Malware的运行时检测框架

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

As the number of Android malware has been increased rapidly over the years, various malware detection methods have been proposed so far. Existing methods can be classified into two categories: static analysis-based methods and dynamic analysis-based methods. Both approaches have some limitations: static analysis-based methods are relatively easy to be avoided through transformation techniques such as junk instruction insertions, code reordering, and so on. However, dynamic analysis-based methods also have some limitations that analysis overheads are relatively high and kernel modification might be required to extract dynamic features. In this paper, we propose a dynamic analysis framework for Android malware detection that overcomes the aforementioned shortcomings. The framework uses a suffix tree that contains API (Application Programming Interface) subtraces and their probabilistic confidence values that are generated using HMMs (Hidden Markov Model) to reduce the malware detection overhead, and we designed the framework with the client-server architecture since the suffix tree is infeasible to be deployed in mobile devices. In addition, an application rewriting technique is used to trace API invocations without any modifications in the Android kernel. In our experiments, we measured the detection accuracy and the computational overheads to evaluate its effectiveness and efficiency of the proposed framework.
机译:随着多年来的Android恶意软件的数量迅速增加,迄今为止提出了各种恶意软件检测方法。现有方法可以分为两类:基于静态分析的方法和基于动态分析的方法。这两种方法都有一些限制:通过诸如垃圾指令插入,代码重新排序等变换技术,静态分析的方法相对容易避免。但是,基于动态分析的方法也具有一些限制,即分析架空是相对较高的,并且可能需要内核修改来提取动态功能。在本文中,我们为Android恶意软件检测提出了一种动态分析框架,克服了上述缺点。该框架使用包含API(应用程序编程接口)的后缀树及其使用HMMS(隐马尔可夫模型)生成的概率置信度值来减少恶意软件检测开销,并且我们设计了与客户端 - 服务器架构的框架后缀树是不可行的,可以部署在移动设备中。此外,应用程序重写技术用于跟踪API调用,而无需在Android内核中的任何修改。在我们的实验中,我们测量了检测精度和计算开销,以评估其提出的框架的有效性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号