首页> 外文OA文献 >Vehicle Identity Recovery for Automatic Number Plate Recognition Data via Heterogeneous Network Embedding
【2h】

Vehicle Identity Recovery for Automatic Number Plate Recognition Data via Heterogeneous Network Embedding

机译:通过异构网络嵌入的自动数字板识别数据的车辆标识恢复

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Automatic number plate recognition (ANPR) systems, which have been widely equipped in many cities, produce numerous travel data for intelligent and sustainable transportation. ANPR data operate at an individual level and carry the unique identities of vehicles, which can support personalized traffic planning. However, these systems also suffer from the common problem of missing data. Different from the traditional missing cases, we focus on the problem of the loss of vehicle identities in ANPR records due to recognition failure or other environmental factors. To address the issue, we propose a heterogeneous graph embedding framework that constructs a travel heterogeneous information network (THIN) and learns the embeddings of the entities to find the best matched vehicles for the unknown records. As a result, the recovery of vehicle identities is cast as an entity alignment task on a THIN. The proposed method integrates the vehicle group entities and context relations into the THIN for capturing the spatiotemporal relationships in vehicle travel and adopts a holographic embeddings model for better fitting the network structure. Empirically, we test it with a real ANPR dataset collected from Xuancheng, China, which has a densely-distributed camera network. The experiments demonstrate the effectiveness of the proposed graph structure under different missing rates. Further, we compare it with other embedding methods and the results support the superiority of holographic embeddings.
机译:自动编号板识别(ANPR)系统已被广泛配备在许多城市,为智能和可持续运输提供了众多旅行数据。 ANPR数据在个人级别运行,携带独特的车辆身份,可以支持个性化的交通规校。然而,这些系统也遭受了缺失数据的常见问题。与传统的缺失案例不同,我们专注于由于识别失败或其他环境因素而导致的ANPR记录中的车辆身份丢失问题。为了解决这个问题,我们提出了一个异构图形嵌入框架,构建旅行异构信息网络(薄),并学习实体的嵌入式,以找到未知记录的最佳匹配车辆。结果,作为实体对准任务的恢复,车辆身份恢复为薄。该方法将车辆组实体和上下文关系集成到薄中,以捕获车辆行驶中的时空关系,并采用全息嵌入模型,以更好地拟合网络结构。经验,我们将其与来自中国Xuancheeng的真正的ANPR数据集进行测试,该数据集具有密集分布式的相机网络。实验证明了所提出的图形结构在不同缺失率下的有效性。此外,我们将其与其他嵌入方法进行比较,结果支持全息嵌入的优越性。

著录项

  • 作者

    Yixian Chen; Zhaocheng He;

  • 作者单位
  • 年度 2020
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号