首页> 外文OA文献 >The H1-compact global attractor for the solutions to the Navier-Stokes equations in two-dimensional unbounded domains
【2h】

The H1-compact global attractor for the solutions to the Navier-Stokes equations in two-dimensional unbounded domains

机译:二维无界域中Navier-Stokes方程解的H1紧致全局吸引子

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We extend previous results obtained by Rosa (1998 Nonlinear Anal. 32 71-85) on the existence of the global attractor for the two-dimensional Navier-Stokes equations on some unbounded domains. We show that if the forcing term is in the natural space H, then the global attractor is compact not only in the L2 norm but also in the H1 norm, and it attracts all bounded sets in H in the metric of V. The proof is based on the concept of asymptotic compactness and the use of the enstrophy equation. As compared with the work of Rosa, which proved the compactness and the attraction in the L2 norm, the new difficulty comes from the fact that the nonlinear term of the Navier-Stokes equations does not disappear from the enstrophy equation, while it does disappear in the energy equation due to its antisymmetry property.
机译:我们扩展了Rosa(1998 Nonlinear Anal。32 71-85)先前关于在某些无界域上二维Navier-Stokes方程的整体吸引子的存在的结果。我们证明,如果强迫项在自然空间H中,则全局吸引子不仅在L2范式中而且在H1范式中都是紧凑的,并且以V的度量吸引H中的所有有界集。基于渐近紧致性的概念和回旋方程的使用。与罗莎(Rosa)的工作相比,后者证明了L2范数的紧致性和吸引力,新的困难来自以下事实:Navier-Stokes方程的非线性项不会从涡旋方程中消失,而在涡旋方程中却消失了能量方程由于其不对称特性

著录项

  • 作者

    Ju Ning;

  • 作者单位
  • 年度 2000
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号