首页> 外文OA文献 >Fault Diagnosis of Rotating Machinery Based on Multisensor Information Fusion Using SVM and Time-Domain Features
【2h】

Fault Diagnosis of Rotating Machinery Based on Multisensor Information Fusion Using SVM and Time-Domain Features

机译:使用SVM和时域特征,基于多传感器信息融合的旋转机械故障诊断

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Multisensor information fusion, when applied to fault diagnosis, the time-space scope, and the quantity of information are expanded compared to what could be acquired by a single sensor, so the diagnostic object can be described more comprehensively. This paper presents a methodology of fault diagnosis in rotating machinery using multisensor information fusion that all the features are calculated using vibration data in time domain to constitute fusional vector and the support vector machine (SVM) is used for classification. The effectiveness of the presented methodology is tested by three case studies: diagnostic of faulty gear, rolling bearing, and identification of rotor crack. For each case study, the sensibilities of the features are analyzed. The results indicate that the peak factor is the most sensitive feature in the twelve time-domain features for identifying gear defect, and the mean, amplitude square, root mean square, root amplitude, and standard deviation are all sensitive for identifying gear, rolling bearing, and rotor crack defect comparatively.
机译:多传感器信息融合,当应用于故障诊断时,与单个传感器可以获取的内容相比,扩展时间空间范围和信息量,因此可以更全面地描述诊断对象。本文介绍了使用多传感器信息融合在旋转机械中的故障诊断方法,即使用时域中的振动数据计算所有特征来构成沉默矢量,并且支持向量机(SVM)用于分类。通过三种案例研究测试所提出的方法的有效性:诊断故障齿轮,滚动轴承和转子裂缝的识别。对于每种案例研究,分析了该特征的敏感性。结果表明,峰值因子是用于识别齿轮缺陷的12个时域特征中最敏感的特征,以及平均值,幅度方形,均方方,根幅度和标准偏差对于识别齿轮,滚动轴承是敏感的和转子裂缝缺陷比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号