首页> 外文OA文献 >The Power of Convex Relaxation: Near-Optimal Matrix Completion
【2h】

The Power of Convex Relaxation: Near-Optimal Matrix Completion

机译:凸松弛的力量:近似最佳矩阵完成

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper is concerned with the problem of recovering an unknown matrix from a small fraction of its entries. This is known as the matrix completion problem, and comes up in a great number of applications, including the famous Netflix Prize and other similar questions in collaborative filtering. In general, accurate recovery of a matrix from a small number of entries is impossible, but the knowledge that the unknown matrix has low rank radically changes this premise, making the search for solutions meaningful. This paper presents optimality results quantifying the minimum number of entries needed to recover a matrix of rank r exactly by any method whatsoever (the information theoretic limit). More importantly, the paper shows that, under certain incoherence assumptions on the singular vectors of the matrix, recovery is possible by solving a convenient convex program as soon as the number of entries is on the order of the information theoretic limit (up to logarithmic factors). This convex program simply finds, among all matrices consistent with the observed entries, that with minimum nuclear norm. As an example, we show that on the order of nr log(n) samples are needed to recover a random n x n matrix of rank r by any method, and to be sure, nuclear norm minimization succeeds as soon as the number of entries is of the form nr polylog(n).
机译:本文涉及从一小部分条目中恢复未知矩阵的问题。这被称为矩阵完成问题,并且出现在许多应用中,包括著名的Netflix奖和协作过滤中的其他类似问题。通常,从少量条目中准确恢复矩阵是不可能的,但是知道未知矩阵具有低秩的知识从根本上改变了这一前提,这使寻找解决方案变得有意义。本文提出了最优结果,该最优结果量化了通过任何方法(信息理论极限)准确地恢复秩为r的矩阵所需的最小条目数。更重要的是,本文表明,在矩阵奇异向量的某些非相干假设下,只要条目的数量达到信息理论极限的数量(由对数因子决定),就可以通过求解一个方便的凸程序来进行恢复。 )。该凸程序仅在与观察到的条目一致的所有矩阵中找到具有最小核范数的矩阵。例如,我们表明,通过任何方法,需要nr log(n)个样本来恢复秩为r的随机nxn矩阵,并且可以肯定的是,一旦条目数为n,则核规范最小化成功。形式为nr polylog(n)。

著录项

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号