首页> 外文OA文献 >An Improved Curvature Circle Algorithm for Orthogonal Projection onto a Planar Algebraic Curve
【2h】

An Improved Curvature Circle Algorithm for Orthogonal Projection onto a Planar Algebraic Curve

机译:平面代数曲线正交投影的改进曲率曲算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Point orthogonal projection onto planar algebraic curve plays an important role in computer graphics, computer aided design, computer aided geometric design and other fields. For the case where the test point p is very far from the planar algebraic curve, we propose an improved curvature circle algorithm to find the footpoint. Concretely, the first step is to repeatedly iterate algorithm (the Newton’s steepest gradient descent method) until the iterated point could fall on the planar algebraic curve. Then seek footpoint by using the algorithm (computing footpoint q ) where the core technology is the curvature circle method. And the next step is to orthogonally project the footpoint q onto the planar algebraic curve by using the algorithm (the hybrid tangent vertical foot algorithm). Repeatedly run the algorithm (computing footpoint q ) and the algorithm (the hybrid tangent vertical foot algorithm) until the distance between the current footpoint and the previous footpoint is near 0. Furthermore, we propose Second Remedial Algorithm based on Comprehensive Algorithm B. In particular, its robustness is greatly improved than that of Comprehensive Algorithm B and it achieves our expected result. Numerical examples demonstrate that Second Remedial Algorithm could converge accurately and efficiently no matter how far the test point is from the plane algebraic curve and where the initial iteration point is.
机译:点正交投影到平面代数曲线在计算机图形学,计算机辅助设计,计算机辅助几何设计等领域起着重要作用。对于从平面代数曲线远离测试点P的情况下,我们提出了一种改进的曲率圆算法来找到脚踏点。具体地,第一步是重复迭代算法(牛顿的近方最梯度下降方法),直到迭代点可能落在平面代数曲线上。然后通过使用核心技术是曲率圆形方法的算法(计算脚点Q)寻求足迹。并且,下一步是通过使用该算法(混合切线垂直脚算法)正交地将足部Q投影到平面代数曲线上。反复运行算法(计算码点Q)和算法(混合切线垂直脚算法),直到当前足够的距离和先前的足够的距离近0.此外,我们提出了基于综合算法B的第二种补救算法。 ,其坚固性大大改善了全面的算法B,它实现了我们的预期结果。数值示例表明,无论测试点来自平面代数曲线以及初始迭代点是多远的,第二种补救算法都可以精确且有效地收敛。

著录项

  • 作者

    Zhinan Wu; Xiaowu Li;

  • 作者单位
  • 年度 2019
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号