首页> 外文OA文献 >A regionalized national universal kriging model using Partial Least Squares regression for estimating annual PM2.5 concentrations in epidemiology
【2h】

A regionalized national universal kriging model using Partial Least Squares regression for estimating annual PM2.5 concentrations in epidemiology

机译:一种区域化的国家通用Kriging模型,使用部分最小二乘回归估算流行病学年度PM2.5浓度

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Many cohort studies in environmental epidemiology require accurate modeling and prediction of fine scale spatial variation in ambient air quality across the U.S. This modeling requires the use of small spatial scale geographic or “land use” regression covariates and some degree of spatial smoothing. Furthermore, the details of the prediction of air quality by land use regression and the spatial variation in ambient air quality not explained by this regression should be allowed to vary across the continent due to the large scale heterogeneity in topography, climate, and sources of air pollution. This paper introduces a regionalized national universal kriging model for annual average fine particulate matter (PM2.5) monitoring data across the U.S. To take full advantage of an extensive database of land use covariates we chose to use the method of Partial Least Squares, rather than variable selection, for the regression component of the model (the “universal” in “universal kriging”) with regression coefficients and residual variogram models allowed to vary across three regions defined as West Coast, Mountain West, and East. We demonstrate a very high level of cross-validated accuracy of prediction with an overall R2 of 0.88 and well-calibrated predictive intervals. In accord with the spatially varying characteristics of PM2.5 on a national scale and differing kriging smoothness parameters, the accuracy of the prediction varies by region with predictive intervals being notably wider in the West Coast and Mountain West in contrast to the East.
机译:环境流行病学的许多同类研究都需要对美国环境空气质量的精细尺度空间变化进行精确建模和预测。这种建模方法需要使用较小的空间尺度地理或“土地利用”回归协变量以及一定程度的空间平滑度。此外,由于地形,气候和空气来源的大规模异质性,应允许在整个大陆上通过土地利用回归预测空气质量的细节以及该回归未解释的周围空气质量的空间变化。污染。本文介绍了一个区域化的全国通用克里格模型,用于全美国的年度平均细颗粒物(PM2.5)监测数据。为了充分利用土地使用协变量的广泛数据库,我们选择使用偏最小二乘方法,而不是变量选择,对于模型的回归成分(“通用克里金法”中的“通用”),回归系数和残差变异函数模型允许在三个区域(西海岸,西山区和东部)之间变化。我们证明了交叉验证的预测准确性非常高,总体R2为0.88,并且校正间隔很好。根据国家尺度上PM2.5的空间变化特征和不同的克里金法平滑度参数,该预测的准确性因地区而异,与东部相比,西海岸和西山区的预测间隔明显更宽。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号