首页> 外文OA文献 >Short-Term Wind Speed Prediction Based on Variational Mode Decomposition and Linear–Nonlinear Combination Optimization Model
【2h】

Short-Term Wind Speed Prediction Based on Variational Mode Decomposition and Linear–Nonlinear Combination Optimization Model

机译:基于变分模式分解和线性非线性组合优化模型的短期风速预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Wind power, one of renewable energy resources, is a fluctuating source of energy that prevents its further participation in the power market. To improve the stability of the wind power injected into the power grid, a short-term wind speed predicting model is proposed in this work, named VMD-P-(ARIMA, BP)-PSOLSSVM. In this model, variational mode decomposition (VMD) is combined with phase space reconstruction (P) as data processing method to determine intrinsic mode function (IMF) and its input−output matrix in the prediction model. Then, the linear model autoregressive integrated moving average model (ARIMA) and typical nonlinear model back propagation neural network (BP) are adopted to forecast each IMF separately and get the prediction of short-term wind speed by adding up the IMFs. In the final stage, particle swarm optimization least squares support vector machine (PSOLSSVM) uses the prediction results of the two separate models from previous step for the secondary prediction. For the proposed method, the PSOLSSVM employs different mathematical principles from ARIMA and BP separately, which overcome the shortcoming of using just single models. The proposed combined optimization model has been applied to two datasets with large fluctuations from a northern China wind farm to evaluate the performance. A performance comparison is conducted by comparing the error from the proposed method to six other models using single prediction techniques. The comparison result indicates the proposed combined optimization model can deliver more accurate and robust prediction than the other models; meanwhile, it means the power grid dispatching work can benefit from implementing the proposed predicting model in the system.
机译:风能是一种可再生能源资源之一,是一种波动的能源来源,防止其进一步参与电力市场。为了提高喷射到电网的风电的稳定性,在这项工作中提出了短期风速预测模型,名为VMD-P-(ARIMA,BP)-PSOLSSVM。在该模型中,变分模式分解(VMD)与相空间重建(P)作为数据处理方法组合,以确定预测模型中的内部模式函数(IMF)及其输入输出矩阵。然后,采用线性模型自回归综合移动平均模型(ARIMA)和典型的非线性模型后传播神经网络(BP)分别预测每个IMF,通过添加IMF来获得短期风速预测。在最终阶段,粒子群优化最小二乘支持向量机(PSOLSSVM)使用来自前一步的两个独立模型的预测结果以获取次要预测。对于提出的方法,PSOLSSVM分别采用来自Arima和BP的不同数学原理,从而克服了仅使用单一模型的缺点。所提出的组合优化模型已应用于两种数据集,该数据集具有来自中国北方风电场的大波动,以评估性能。通过将所提出的方法从所提出的方法与使用单个预测技术的六种模型进行比较来进行性能比较。比较结果表明所提出的组合优化模型可以提供比其他模型更准确和鲁棒的预测;同时,这意味着电网调度工作可以受益于在系统中实现所提出的预测模型。

著录项

  • 作者

    Qi Gao; Wei Sun;

  • 作者单位
  • 年度 2019
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号