首页> 外文OA文献 >Soft Sensor Modeling Method by Maximizing Output-Related Variable Characteristics Based on a Stacked Autoencoder and Maximal Information Coefficients
【2h】

Soft Sensor Modeling Method by Maximizing Output-Related Variable Characteristics Based on a Stacked Autoencoder and Maximal Information Coefficients

机译:基于堆叠的AutoEncoder和最大信息系数的输出相关变量特征来最大化输出相关变量特征的软传感器建模方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The key factors required to establish a precise soft sensor model for industrial processes include selection of variables affecting vital indicators from a large number of online measurement variables and elimination of the effects of unrelated disturbance variables. How to compress redundant information and retain the unique characteristic information contained by the selected variables is worthy of in-depth research. A novel soft sensor modeling method based on weighted maximal information coefficients (MICs) and a stacked autoencoder (SAE), hereinafter referred to as MICW-SAE, is proposed in this work. In our model, the MICs between each input and output variable are calculated and compared with the threshold before training each network in SAE. Then, input variables with low MICs are selected, and the average MIC index is calculated using other input variables. If the index is higher than the second threshold, the MIC of this specific variable is set to 0. Finally, the weights of all input variables are determined in accordance with the scale and placed into the loss function for training. The Boston house-price and naphtha dry point temperature datasets are used to prove the prediction ability of our model. Results demonstrate that MICW-SAE can enhance the output-related features of the input variables. Moreover, redundant information that can also be represented by other input variables are identified and excluded.
机译:建立工业过程的精确软传感器模型所需的关键因素包括从大量在线测量变量和消除无关扰动变量的影响的变量选择变量。如何压缩冗余信息并保留所选变量所含的唯一特征信息值得深入研究。在这项工作中提出了一种基于加权最大信息系数(MICS)和堆叠的AutoEncoder(SAE)的新型软传感器建模方法和堆叠的autoEncoder(SAE)。在我们的模型中,计算每个输入和输出变量之间的MIC,并在SAE中训练每个网络之前与阈值进行比较。然后,选择具有低MIC的输入变量,使用其他输入变量计算平均麦克风索引。如果索引高于第二阈值,则该特定变量的麦克风将被设置为0.最后,所有输入变量的权重根据刻度确定并放置到损耗函数中进行训练。波士顿房价和石脑油干点温度数据集用于证明我们模型的预测能力。结果表明,MICW-SAE可以增强输入变量的输出相关特征。此外,还可以识别并排除也可以被其他输入变量表示的冗余信息。

著录项

  • 作者

    Yanzhen Wang; Xuefeng Yan;

  • 作者单位
  • 年度 2019
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号