首页> 外文OA文献 >Preliminary Study of Soil Available Nutrient Simulation Using a Modified WOFOST Model and Time-Series Remote Sensing Observations
【2h】

Preliminary Study of Soil Available Nutrient Simulation Using a Modified WOFOST Model and Time-Series Remote Sensing Observations

机译:使用改进的Wofost模型和时间序列遥感观测土壤可用营养模拟初步研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The approach of using multispectral remote sensing (RS) to estimate soil available nutrients (SANs) has been recently developed and shows promising results. This method overcomes the limitations of commonly used methods by building a statistical model that connects RS-based crop growth and nutrient content. However, the stability and accuracy of this model require improvement. In this article, we replaced the statistical model by integrating the World Food Studies (WOFOST) model and time series of remote sensing (T-RS) observations to ensure stability and accuracy. Time series of HJ-1 A/B data was assimilated into the WOFOST model to extrapolate crop growth simulations from a single point to a large area using a specific assimilation method. Because nutrient-limited growth within the growing season is required and the SAN parameters can only be used at the end of the growing season in the original model, the WOFOST model was modified. Notably, the calculation order was changed, and new soil nutrient uptake algorithms were implemented in the model for nutrient-limited growth estimation. Finally, experiments were conducted in the spring maize plots of Hongxing Farm to analyze the effects of nutrient stress on crop growth and the SAN simulation accuracy. The results confirm the differences in crop growth status caused by a lack of soil nutrients. The new approach can take advantage of these differences to provide better SAN estimates. In general, the new approach can overcome the limitations of existing methods and simulate the SAN status with reliable accuracy.
机译:最近已经开发了使用多光谱遥感(RS)来估计土壤可用营养素(SAN)的方法,并显示出现有前途的结果。该方法通过建立连接基于RS的作物生长和营养含量的统计模型来克服常用方法的局限性。然而,该模型的稳定性和准确性需要改进。在本文中,我们通过将世界食物研究(WOFOST)模型和时间序列的遥感(T-R级)观测集成来替换统计模型,以确保稳定性和准确性。 HJ-1 A / B数据的时间序列被同化到WOFOST模型中,以使用特定的同化方法将作物生长模拟从单点推断到大面积。由于需要生长季节内的营养有限的增长,并且SAN参数只能在原始模型中生长季节的末端使用,因此修改了WOFOST模型。值得注意的是,计算顺序发生了改变,并在营养有限的生长估算模型中实施了新的土壤营养素摄取算法。最后,在红兴农场的春玉米图中进行了实验,分析了养分应力对作物生长和SAN仿真精度的影响。结果证实了缺乏土壤营养素引起的作物生长状态的差异。新方法可以利用这些差异来提供更好的SAN估计。通常,新方法可以克服现有方法的局限性,并以可靠的准确性模拟SAN状态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号