首页> 外文OA文献 >A multi-parameterized artificial neural network for lung cancer risk prediction
【2h】

A multi-parameterized artificial neural network for lung cancer risk prediction

机译:一种多参数化人工神经网络,用于肺癌风险预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The objective of this study is to train and validate a multi-parameterized artificial neural network (ANN) based on personal health information to predict lung cancer risk with high sensitivity and specificity. The 1997-2015 National Health Interview Survey adult data was used to train and validate our ANN, with inputs: gender, age, BMI, diabetes, smoking status, emphysema, asthma, race, Hispanic ethnicity, hypertension, heart diseases, vigorous exercise habits, and history of stroke. We identified 648 cancer and 488,418 non-cancer cases. For the training set the sensitivity was 79.8% (95% CI, 75.9%-83.6%), specificity was 79.9% (79.8%-80.1%), and AUC was 0.86 (0.85-0.88). For the validation set sensitivity was 75.3% (68.9%-81.6%), specificity was 80.6% (80.3%-80.8%), and AUC was 0.86 (0.84-0.89). Our results indicate that the use of an ANN based on personal health information gives high specificity and modest sensitivity for lung cancer detection, offering a cost-effective and non-invasive clinical tool for risk stratification.
机译:本研究的目的是基于个人健康信息训练和验证多参数化人工神经网络(ANN),以预测高敏感性和特异性的肺癌风险。 1997-2015全国卫生面试调查成人数据用于培训和验证我们的ANN,输入:性别,年龄,BMI,糖尿病,吸烟地位,肺气肿,哮喘,种族,西班牙裔民族,高血压,心脏病,剧烈的运动习惯和中风的历史。我们确定了648例癌症和488,418名非癌症病例。对于培训设定,灵敏度为79.8%(95%CI,75.9%-83.6%),特异性为79.9%(79.8%-80.1%),AUC为0.86(0.85-0.88)。对于验证设定的敏感性为75.3%(68.9%-81.6%),特异性为80.6%(80.3%-80.8%),AUC为0.86(0.84-0.89)。我们的结果表明,基于个人健康信息的ANN的使用为肺癌检测提供了高特异性和适度敏感性,为风险分层提供了成本效益和无侵入性的临床工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号