首页> 外文OA文献 >CricShotClassify: An Approach to Classifying Batting Shots from Cricket Videos Using a Convolutional Neural Network and Gated Recurrent Unit
【2h】

CricShotClassify: An Approach to Classifying Batting Shots from Cricket Videos Using a Convolutional Neural Network and Gated Recurrent Unit

机译:Cricshotclassify:使用卷积神经网络和门控复发单元对板球视频进行分类拍摄的方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recognizing the sport of cricket on the basis of different batting shots can be a significant part of context-based advertisement to users watching cricket, generating sensor-based commentary systems and coaching assistants. Due to the similarity between different batting shots, manual feature extraction from video frames is tedious. This paper proposes a hybrid deep-neural-network architecture for classifying 10 different cricket batting shots from offline videos. We composed a novel dataset, CricShot10, comprising uneven lengths of batting shots and unpredictable illumination conditions. Impelled by the enormous success of deep-learning models, we utilized a convolutional neural network (CNN) for automatic feature extraction, and a gated recurrent unit (GRU) to deal with long temporal dependency. Initially, conventional CNN and dilated CNN-based architectures were developed. Following that, different transfer-learning models were investigated—namely, VGG16, InceptionV3, Xception, and DenseNet169—which freeze all the layers. Experiment results demonstrated that the VGG16–GRU model outperformed the other models by attaining 86% accuracy. We further explored VGG16 and two models were developed, one by freezing all but the final 4 VGG16 layers, and another by freezing all but the final 8 VGG16 layers. On our CricShot10 dataset, these two models were 93% accurate. These results verify the effectiveness of our proposed architecture compared with other methods in terms of accuracy.
机译:在不同的击球射击的基础上认识到蟋蟀的运动可以是对观看板球的用户的基于背景广告的重要组成部分,产生基于传感器的评论系统和教练助手。由于不同的击球射击之间的相似性,来自视频帧的手动特征提取是乏味的。本文提出了一种混合深神经网络架构,用于将10个不同的板球击球镜头分类为离线视频。我们组成了一个新型数据集Cricshot10,包括击球射击的不均匀长度和不可预测的照明条件。深受深度学习模型的巨大成功驾驶,我们利用了一种用于自动特征提取的卷积神经网络(CNN),以及处理长时间依赖性的门控复发单元(GRU)。最初,开发了常规CNN和扩张的基于CNN的架构。在此之后,研究了不同的转移学习模型 - 即VGG16,Inceptionv3,七,冻结和Densenet169 - 冻结所有层。实验结果表明,VGG16-GRU模型通过达到86%的精度来表现出其他模型。我们进一步探索了VGG16和两种型号,通过冻结了最终的4 VGG16层,另一个型号通过冻结了最终的8 VGG16层。在我们的CRICSHOT10数据集上,这两种型号的准确性为93%。这些结果验证了我们所提出的体系结构的有效性与其他方法在准确性方面相比。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号