首页> 外文OA文献 >Sparse Bayesian Learning Based Three-Dimensional Imaging Algorithm for Off-Grid Air Targets in MIMO Radar Array
【2h】

Sparse Bayesian Learning Based Three-Dimensional Imaging Algorithm for Off-Grid Air Targets in MIMO Radar Array

机译:基于稀疏的贝叶斯学习的MIMO雷达阵列的离网空气目标三维成像算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In recent years, the development of compressed sensing (CS) and array signal processing provides us with a broader perspective of 3D imaging. The CS-based imaging algorithms have a better performance than traditional methods. In addition, the sparse array can overcome the limitation of aperture size and number of antennas. Since the signal to be reconstructed is sparse for air targets, many CS-based imaging algorithms using a sparse array are proposed. However, most of those algorithms assume that the scatterers are exactly located at the pre-discretized grids, which will not hold in real scene. Aiming at finding an accurate solution to off-grid target imaging, we propose an off-grid 3D imaging method based on improved sparse Bayesian learning (SBL). Besides, the Bayesian Cramér-Rao Bound (BCRB) for off-grid bias estimator is provided. Different from previous algorithms, the proposed algorithm adopts a three-stage hierarchical sparse prior to introduce more degrees of freedom. Then variational expectation maximization method is applied to solve the sparse recovery problem through iteration, during each iteration joint sparsity is used to improve efficiency. Experimental results not only validate that the proposed method outperforms the existing off-grid imaging methods in terms of accuracy and resolution, but have compared the root mean square error with corresponding BCRB, proving effectiveness of the proposed method.
机译:近年来,压缩传感(CS)和阵列信号处理的开发为我们提供了更广泛的3D成像视角。基于CS的成像算法具有比传统方法更好的性能。此外,稀疏阵列可以克服孔径大小和天线数的限制。由于要重建的信号对于空气目标稀疏,因此提出了使用使用稀疏阵列的许多基于CS的成像算法。然而,这些算法中的大多数假设散射器恰好位于预离散的网格,这不会在真实场景中保持。旨在寻找准确的偏离电网目标成像的解决方案,我们提出了一种基于改进的稀疏贝叶斯学习(SBL)的离网3D成像方法。此外,提供了用于离网偏置估计器的贝叶斯·克拉姆河-RAO绑定(BCRB)。与以前的算法不同,所提出的算法在引入更多的自由度之前采用三级等级稀疏。然后,在每次迭代关节稀疏期间应用变分期最大化方法以通过迭代来解决稀疏恢复问题,用于提高效率。实验结果不仅验证了所提出的方法在准确性和分辨率方面优于现有的离网成像方法,但已经与相应的BCRB进行了与相应的BCRB进行了比较,证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号