首页> 外文OA文献 >Model-Free Gradient-Based Adaptive Learning Controller for an Unmanned Flexible Wing Aircraft
【2h】

Model-Free Gradient-Based Adaptive Learning Controller for an Unmanned Flexible Wing Aircraft

机译:无人柔性翼飞机的无模型基于梯度的自适应学习控制器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Classical gradient-based approximate dynamic programming approaches provide reliable and fast solution platforms for various optimal control problems. However, their dependence on accurate modeling approaches poses a major concern, where the efficiency of the proposed solutions are severely degraded in the case of uncertain dynamical environments. Herein, a novel online adaptive learning framework is introduced to solve action-dependent dual heuristic dynamic programming problems. The approach does not depend on the dynamical models of the considered systems. Instead, it employs optimization principles to produce model-free control strategies. A policy iteration process is employed to solve the underlying Hamilton⁻Jacobi⁻Bellman equation using means of adaptive critics, where a layer of separate actor-critic neural networks is employed along with gradient descent adaptation rules. A Riccati development is introduced and shown to be equivalent to solving the underlying Hamilton⁻Jacobi⁻Bellman equation. The proposed approach is applied on the challenging weight shift control problem of a flexible wing aircraft. The continuous nonlinear deformation in the aircraft’s flexible wing leads to various aerodynamic variations at different trim speeds, which makes its auto-pilot control a complicated task. Series of numerical simulations were carried out to demonstrate the effectiveness of the suggested strategy.
机译:基于古典梯度的近似动态编程方法为各种最佳控制问题提供可靠和快速的解决方案平台。然而,他们对准确建模方法的依赖性构成了主要问题,其中提出的解决方案的效率在不确定的动态环境的情况下严重降低。这里,引入了一种新的在线自适应学习框架来解决动作依赖的双发主义动态规划问题。该方法不依赖于所考虑系统的动态模型。相反,它采用优化原则来生产无模型控制策略。使用自适应批评方法,采用政策迭代过程来解决底层汉密尔顿⁻jacobi⁻bellman方程,其中一层单独的演员 - 评论家神经网络与梯度下降适应规则一起使用。介绍了Riccati开发,并表明相当于解决潜在的Hamilton⁻jacobi⁻bellman方程。所提出的方法适用于柔性翼飞机的挑战权重换档控制问题。飞机柔性翼的连续非线性变形导致不同的修剪速度的各种空气动力学变化,这使其自动导频控制了复杂的任务。进行了一系列数值模拟,以证明建议的策略的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号