首页> 外文OA文献 >Improved Subword Modeling for WFST-Based Speech Recognition
【2h】

Improved Subword Modeling for WFST-Based Speech Recognition

机译:基于WFST的语音识别改进的子字建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Because in agglutinative languages the number of observed word forms is very high, subword units are often utilized in speech recognition. However, the proper use of subword units requires careful consideration of details such as silence modeling, position-dependent phones, and combination of the units. In this paper, we implement subword modeling in the Kaldi toolkit by creating modified lexicon by finite-state transducers to represent the subword units correctly. We experiment with multiple types of word boundary markers and achieve the best results by adding a marker to the left or right side of a subword unit whenever it is not preceded or followed by a word boundary, respectively. We also compare three different toolkits that provide data-driven subword segmentations. In our experiments on a variety of Finnish and Estonian datasets, the best subword models do outperform word-based models and naive subword implementations. The largest relative reduction in WER is a 23% over word-based models for a Finnish read speech dataset. The results are also better than any previously published ones for the same datasets, and the improvement on all datasets is more than 5%.
机译:因为在凝集语言中观察到的单词形式的数量非常高,次字单元通常用于语音识别。然而,正确使用子字单元需要仔细考虑诸如沉默建模,位置相关的电话和单位组合的细节。在本文中,我们通过通过有限状态传感器创建修改后的词典来实现kaldi工具包中的子字建模,以正确地表示子字单元。我们尝试多种类型的单词边界标记,并且只要其不前述或后跟单词边界,可以通过向子字单元的左侧或右侧添加标记来实现最佳结果。我们还比较三种不同的工具包,提供数据驱动子字分段。在我们对各种芬兰和爱沙尼亚数据集的实验中,最好的子字型号确实表现出基于词的型号和天真的子字实现。 WER的最大相对减少是芬兰读语音数据集的基于单词的模型中的23%。结果也比以前发布的相同数据集更好,并且所有数据集的改进超过5%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号