首页> 外文OA文献 >Remote Sensing of Atmospheric Trace Gases by Ground-Based Solar Fourier Transform Infrared Spectroscopy
【2h】

Remote Sensing of Atmospheric Trace Gases by Ground-Based Solar Fourier Transform Infrared Spectroscopy

机译:地基太阳傅里叶变换红外光谱遥感大气痕量气体

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The changing composition of the earth’s atmosphere is a matter of intense scientific research as we strive to understand details of the physical and chemical mechanisms that control our climate. Fourier transform spectroscopy has been applied very successfully to the study of trace gases in the atmosphere by examining terrestrial atmospheric absorption lines in the infrared spectrum from the Sun. In fact many gases were first discovered in the atmosphere during the 1940’s from their absorption features in the infrared solar spectrum. These early optical absorption measurements of the atmosphere using the Sun as a source were made with grating spectrometers and examples of atmospheric gases first detected this way include methane and CO [Migeotte, 1948; 1949]. Continuous or semi-continuous records of infrared solar atmospheric absorption spectra have been made from ground-based Fourier transform spectrometers (FTS) since the late 1970s and early 1980s, when the first ground-based solar-tracking FTS systems were installed at Kitt Peak National observatory in the USA and at the Jungfraujoch Observatory in Switzerland. Initially interest was focused on the detection and quantification of stratospheric trace gases [Rinsland et al., 1986; Zander et al., 1986]. The discovery of the Antarctic ozone hole [Farman et al., 1985] intensified interest in stratospheric chemistry and helped support the establishment of the Network for Detection of Stratospheric Change (NDSC). This global network of instrument sites became operational in 1991 with ground-based FTS amongst the suite of primary techniques being used. Photographs of the instrument at the NDACC site at Wollongong, Australia are shown for illustrative purposes in figure 1 below. Other NDSC instruments are lidars for ozone, temperature, water and aerosols; microwave instruments for ozone, water and chlorine monoxide; UV/Visible spectrograph for ozone and nitrogen dioxide; Dobson/Brewer spectrophotometers for total column ozone and regular ozone sondes. This resulted in a huge increase in the number of infrared solar absorption measurements being made around the globe during the next few years, e.g. [Bell et al., 1994; Bell et al., 1996; Bell et al., 1998; Blumenstock et al., 1997; David et al., 1993; Griffith et al., 1998; Jones et al., 1994; Liu et al., 1992; Mahieu et al., 1995; Notholt, 1994; Notholt et al., 1997; Toon et al., 1999; Toon et al., 1995; Zander et al., 1994]. More recently interest in atmospheric chemistry has been focused on tropospheric pollution and anthropogenic emissions of greenhouse gases [Barret et al., 2003; Jones et al., 2009; Mahieu et al., 1995; Nagahama et al., 2007; Paton-Walsh et al., 2008; Rinsland et al., 2000; Rinsland et al., 2001; Rinsland et al., 2002; Rinsland et al., 2008; Warneke et al., 2006; Zhao et al., 2000; Zhao et al., 2002]. As a result, the NDSC has changed its emphasis and name to the Network for Detection of Atmospheric Composition and Change (NDACC) – see http://www.ndacc.org/. As well as an ever increasing number of sites in the global network the new millennium has seen an expansion into the near infrared spectra region in an effort to provide extremely accurate and precise measurements of carbon dioxide. The Total Column Carbon Observing Network (TCCON) was established to help characterise biogenic and oceanic sources and sinks of greenhouse gases to and from the atmosphere and to validate current and future satellite based measurements (http://www.tccon.caltech.edu/ ). In this chapter the reader will get a brief introduction to the basic theory behind the retrieval of atmospheric trace gas amounts from atmospheric solar infrared transmission spectra and an overview of the previous successes and current challenges in this field of research.
机译:地球大气的变化构成是强烈的科学研究问题,因为我们努力了解控制我们气候的物理和化学机制的细节。通过检查红外光谱中的陆地大气吸收线,傅里叶变换光谱已经非常成功地应用于大气中的痕量气体。实际上,在1940年在红外太阳光谱中的吸收特征中首次在大气中发现了许多气体。使用太阳作为源的大气的这些早期光学吸收测量用光栅光谱仪制造,并首先检测到大气气体的例子,包括甲烷和CO [Migeotte,1948; 1949]。自20世纪70年代后期和20世纪80年代初期以来,由地面傅里叶变换光谱仪(FTS)制造了连续或半连续记录,当时第一个基于地面的太阳能跟踪FTS系统安装在Kitt Peak National天文台在美国和瑞士的Jungfraujoch天文台。最初兴趣的是重点研究平流层痕量气体的检测和定量[Rinsland等,1986年; Zander等人。,1986]。发现南极臭氧孔[Farman等,1985]强烈对平流层化学的兴趣,并帮助支持建立网络,用于检测流程图(NDSC)。这座全球仪器网站网络于1991年在使用的主要技术套件中具有基于地面的FTS。澳大利亚威尔龙港的NDACC网站的仪器照片显示在下面图1中的说明性目的。其他NDSC仪器是臭氧,温度,水和气溶胶的LIDARS;用于臭氧,水和氯一氯的微波仪器;紫外/可见光光谱仪进行臭氧和二氧化氮; Dobson / Brewer分光光度计臭氧和常规臭氧钻石。这导致在未来几年内在全球各地制造的红外太阳能吸收测量数量巨大增加,例如,在全球范围内进行。 [贝尔等人,1994年;贝尔等人。,1996年;贝尔等人。,1998年; Blumenstock等,1997年; David等,1993年;格里菲特等人。,1998年;琼斯等人,1994年;刘等人。,1992年; Mahieu等,1995年; NOTHOLT,1994; NOTHHTHTHT等人,1997年; Toon等人,1999年; Toon等人,1995年; Zander等人。,1994]。最近对大气化学的兴趣一直专注于对流层污染和温室气体的人为排放[Bartet等,2003;琼斯等,2009; Mahieu等,1995年; Nagahama等,2007年; Paton-Walsh等,2008年; Rinsland等,2000; Rinsland等,2001; Rinsland等,2002; Rinsland等,2008年; Warneke等,2006年;赵等人。,2000;赵等人。,2002]。因此,NDSC已将其强调和名称更改为网络,以检测大气成分和变更(NDACC) - 请参阅http://www.ndacc.org/。除了越来越多的全球网络中越来越多的网站,新的千年已经看到了进入近红外光谱区域的扩展,以提供极其准确和精确的二氧化碳测量。建立了总柱碳观察网络(TCCON),以帮助将生物和海洋来源和从大气中的温室气体汇总,并验证基于卫星的卫星(http://www.tccon.caltech.edu/) )。在本章中,读者将简要介绍从大气太阳红外传输光谱从大气太阳红外传输谱检索的基本理论,并概述了这一研究领域的先前成功和当前挑战。

著录项

  • 作者

    Clare Paton-Walsh;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号