首页> 外文OA文献 >An Automatic User Activity Analysis Method for Discovering Latent Requirements: Usability Issue Detection on Mobile Applications
【2h】

An Automatic User Activity Analysis Method for Discovering Latent Requirements: Usability Issue Detection on Mobile Applications

机译:用于发现潜在要求的自动用户活动分析方法:移动应用程序的可用性问题检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Starting with the Internet of Things (IoT), new forms of system operation concepts have emerged to provide creative services through collaborations among autonomic devices. Following these paradigmatic changes, the ability of each participating system to automatically diagnose the degree of quality it is providing is inevitable. This paper proposed a method to automatically detect symptoms that hinder certain quality attributes. The method consisted of three steps: (1) extracting information from real usage logs and automatically generating an activity model from the captured information; (2) merging multiple user activity models into a single, representative model; and (3) detecting differences between the representative user activity model, and an expected activity model. The proposed method was implemented in a domain-independent framework, workable on the Android platform. Unlike other related works, we used quantitative evaluation results to show the benefits of applying the proposed method to five Android-based, open-source mobile applications. The evaluation results showed that the average precision rate for the automatic detection of symptoms was 70%, and the success rate for user implementation of usage scenarios demonstrated an improvement of around 21%, when the automatically detected symptoms were resolved.
机译:从事互联网(IOT)开始,已经出现了新的系统操作概念,通过自主设备之间的合作提供了创造性服务。在这些范式的变化之后,每个参与系统自动诊断其提供的质量程度的能力是不可避免的。本文提出了一种自动检测妨碍某些质量属性的症状的方法。该方法包括三个步骤:(1)从真实用法日志中提取信息并自动从捕获的信息生成活动模型; (2)将多个用户活动模型合并为单个代表模型; (3)检测代表用户活动模型与预期活动模型之间的差异。所提出的方法是在域独立的框架中实现的,可在Android平台上工作。与其他相关工作不同,我们使用定量评估结果显示将所提出的方法应用于五个Android的开源移动应用程序的好处。评价结果表明,自动检测症状的平均精度率为70%,用户实施方案的成功率表现出大约21%的提高,当时检测到症状左右。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号