首页> 外文OA文献 >Detecting Adversarial Image Examples in Deep Neural Networks with Adaptive Noise Reduction
【2h】

Detecting Adversarial Image Examples in Deep Neural Networks with Adaptive Noise Reduction

机译:具有自适应降噪的深神经网络中的对抗性图像示例

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Deep neural networks (DNNs) play a key role in many applications.Unsurprisingly, they also became a potential attack target of adversaries. Somestudies have demonstrated DNN classifiers can be fooled by the adversarialexample, which is crafted via introducing some perturbations into an originalsample. Accordingly, some powerful defense techniques were proposed againstadversarial examples. However, existing defense techniques require modifyingthe target model or depend on the prior knowledge of attack techniques todifferent degrees. In this paper, we propose a straightforward method fordetecting adversarial image examples. It doesn't require any prior knowledge ofattack techniques and can be directly deployed into unmodified off-the-shelfDNN models. Specifically, we consider the perturbation to images as a kind ofnoise and introduce two classical image processing techniques, scalarquantization and smoothing spatial filter, to reduce its effect. The imagetwo-dimensional entropy is employed as a metric to implement an adaptive noisereduction for different kinds of images. As a result, the adversarial examplecan be effectively detected by comparing the classification results of a givensample and its denoised version. Thousands of adversarial examples against somestate-of-the-art DNN models are used to evaluate the proposed method, which arecrafted with different attack techniques. The experiment shows that ourdetection method can achieve an overall recall of 93.73% and an overallprecision of 95.47% without referring to any prior knowledge of attacktechniques.
机译:深度神经网络(DNN)在许多申请中发挥着关键作用。不想而知,他们也成为了对手的潜在攻击目标。有麻醉剂已经证明了DNN分类器可以由普通话可以欺骗,这是通过将一些扰动引入原始困境而制作的。因此,提出了一些强大的防御技术接受实施例。然而,现有的防御技术需要修改目标模型或依赖于攻击技术的先前知识。在本文中,我们提出了一种简单的方法,用于抑制对抗性图像示例。它不需要任何现有知识的attack技术,并且可以直接部署到未修改的离子型模型中。具体地,我们考虑对图像的图像扰动作为一种不良,并引入两个经典图像处理技术,标量化和平滑的空间滤波器,以减少其效果。仿涂无型维熵作为指标,用于实现不同种类图像的自适应噪声。结果,通过比较Givencleapple及其去噪版本的分类结果,有效地检测到对抗性检测。针对艺术型DNN模型的数千种对抗的实例用于评估具有不同攻击技术的建议方法。实验表明,Oudetection方法可以达到93.73%的总召回,而且在不参考攻击技术的任何先前知识的情况下达到93.73%的总体召回和95.47%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号