首页> 外文OA文献 >Learning Clique Subgraphs in Structural Brain Network Classification with Application to Crystallized Cognition
【2h】

Learning Clique Subgraphs in Structural Brain Network Classification with Application to Crystallized Cognition

机译:学习结构脑网络分类中的基团子图,应用于结晶认知

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Structural brain networks constructed from diffusion MRI are important biomarkers for understanding human brain structure and its relation to cognitive functioning. There is increasing interest in learning differences in structural brain networks between groups of subjects in neuroimaging studies, leading to a variable selection problem in network classification. Traditional methods often use independent edgewise tests or unstructured generalized linear model (GLM) with regularization on vectorized networks to select edges distinguishing the groups, which ignore the network structure and make the results hard to interpret. In this paper, we develop a symmetric bilinear logistic regression (SBLR) with elastic-net penalty to identify a set of small clique subgraphs in network classification. Clique subgraphs, consisting of all the interconnections among a subset of brain regions, have appealing neurological interpretations as they may correspond to some anatomical circuits in the brain related to the outcome. We apply this method to study differences in the structural connectome between adolescents with high and low crystallized cognitive ability, using the crystallized cognition composite score, picture vocabulary and oral reading recognition tests from NIH Toolbox. A few clique subgraphs containing several small sets of brain regions are identified between different levels of functioning, indicating their importance in crystallized cognition.
机译:从扩散MRI构建结构性脑网络是了解人脑结构及其与认知功能的重要标志物。有一个在学习中的神经影像学研究的受试者群体之间的结构性脑网络的差异,导致了网络分类的变量选择问题越来越多的关注。传统的方法通常使用对向量化网络与正规化独立沿边测试或非结构化广义线性模型(GLM)来选择边缘区分基团,其忽略网络结构和使结果难以解释。在本文中,我们开发了一个对称双线性回归(SBLR)与弹性净处罚,以确定一组网络分类小集团子图。集团子图,大脑区域的一个子集当中包括所有的互连,已经吸引神经的解释,因为他们可能在与结果的大脑相当于一些解剖电路。我们将此方法应用于在高和低结晶认知能力的青少年之间的结构连接组研究中的差异,使用结晶认知综合得分,图片词汇和来自美国国立卫生研究院工具箱朗读识别测试。包含若干小套的大脑区域的几个集团子图不同层次的运作之间的标识,表明其在结晶认知的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号