首页> 外文OA文献 >A Combined Deep Learning GRU-Autoencoder for the Early Detection of Respiratory Disease in Pigs Using Multiple Environmental Sensors
【2h】

A Combined Deep Learning GRU-Autoencoder for the Early Detection of Respiratory Disease in Pigs Using Multiple Environmental Sensors

机译:一种组合的深层学习GRU-Autoencoder,用于使用多种环境传感器早期检测猪呼吸道疾病

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We designed and evaluated an assumption-free, deep learning-based methodology for animal health monitoring, specifically for the early detection of respiratory disease in growing pigs based on environmental sensor data. Two recurrent neural networks (RNNs), each comprising gated recurrent units (GRUs), were used to create an autoencoder (GRU-AE) into which environmental data, collected from a variety of sensors, was processed to detect anomalies. An autoencoder is a type of network trained to reconstruct the patterns it is fed as input. By training the GRU-AE using environmental data that did not lead to an occurrence of respiratory disease, data that did not fit the pattern of “healthy environmental data” had a greater reconstruction error. All reconstruction errors were labelled as either normal or anomalous using threshold-based anomaly detection optimised with particle swarm optimisation (PSO), from which alerts are raised. The results from the GRU-AE method outperformed state-of-the-art techniques, raising alerts when such predictions deviated from the actual observations. The results show that a change in the environment can result in occurrences of pigs showing symptoms of respiratory disease within 1–7 days, meaning that there is a period of time during which their keepers can act to mitigate the negative effect of respiratory diseases, such as porcine reproductive and respiratory syndrome (PRRS), a common and destructive disease endemic in pigs.
机译:我们设计并评估了一种无基于学习的动物健康监测方法,特别是在基于环境传感器数据的生长猪中的早期检测到早期发现呼吸道疾病。两个经常性的神经网络(RNNS),每个网络(RNN)包括门控复发单元(GRUS),用于创建自动化器(GRU-AE),从各种传感器中收集到哪个环境数据中以检测异常。 AutoEncoder是一种训练以重建它被馈送为输入的模式的网络。通过使用没有导致呼吸系统疾病的环境数据的环境数据训练GRU-AE,不符合“健康环境数据”模式的数据具有更大的重建误差。所有重建误差都标记为使用基于阈值的异常检测的正常或异常,与粒子群优化(PSO)优化,从中提出了警报。 GRU-AE方法的结果优于最先进的技术,当这些预测偏离实际观察时提高警报。结果表明,环境的变化可能导致猪出现显示呼吸道疾病症状在1-7天内,这意味着他们的饲养员可以采取持续影响呼吸系统疾病的负面影响作为猪生殖和呼吸综合征(PRRS),猪的常见和破坏性疾病。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号