首页> 外文OA文献 >Degradation Tendency Measurement of Aircraft Engines Based on FEEMD Permutation Entropy and Regularized Extreme Learning Machine Using Multi-Sensor Data
【2h】

Degradation Tendency Measurement of Aircraft Engines Based on FEEMD Permutation Entropy and Regularized Extreme Learning Machine Using Multi-Sensor Data

机译:基于FEEMD置换熵和使用多传感器数据的飞机发动机的降解趋势测量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

As the core component and main power source for aircrafts, the reliability of an aero engine is vital for the security operation of aircrafts. Degradation tendency measurement on an engine can not only improve its safety, but effectively reduce the maintenance costs. In this paper, a hybrid method using multi-sensor data based on fast ensemble empirical mode decomposition permutation entropy (FEEMD-PE) and regularized extreme learning machine (RELM), systematically blending the signal processing technology and trend prediction approach, is proposed for aircraft engine degradation tendency measurement. Firstly, a synthesized degradation index was designed utilizing multi-sensor data and a data fusion technique to evaluate the degradation level of the engine unit. Secondly, in order to eliminate the irregular data fluctuation, FEEMD was employed to efficiently decompose the constructed degradation index series. Subsequently, considering the complexity of intrinsic mode functions (IMFs) obtained through sequence decomposition, a permutation entropy-based reconstruction strategy was innovatively developed to generate the refactored IMFs (RIMFs), which have stronger ability for describing the degradation states and contribute to improving the prediction accuracy. Finally, RIMFs were used as the inputs of the RELM model to measure the degradation tendency. The proposed method was applied to the degradation tendency measurement of aircraft engines. The results confirm the effectiveness and superiority of the proposed method, and it is more suitable for actual applications compared with other existing approaches.
机译:作为飞机的核心部件和主电源,Aero发动机的可靠性对于飞机的安全运行至关重要。发动机上的退化趋势测量不仅可以提高其安全性,而且可以有效地降低维护成本。本文采用了一种混合方法,采用基于快速集合经验模型分解熵(FEEMD-PE)和正规化的极端学习机(Relm),为飞机提出了一种混合方法和正规化的极限学习机(Relm),为飞机提出了信号处理技术和趋势预测方法发动机降解趋势测量。首先,利用多传感器数据和数据融合技术设计合成的降解指数,以评估发动机单元的劣化水平。其次,为了消除不规则的数据波动,使用FEEMD以有效地分解构建的降解指数系列。随后,考虑到通过序列分解获得的内在模式功能(IMF)的复杂性,基于置换熵的重建战略创新开发,以产生重构的IMF(RIMF),这具有更强的描述劣化状态并有助于改善改善预测准确性。最后,使用RIMF作为relm模型的输入来测量降低趋势。该方法应用于飞机发动机的降解趋势测量。结果证实了所提出的方法的有效性和优越性,与其他现有方法相比,它更适合实际应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号