首页> 外文OA文献 >Gearbox fault diagnosis based on local mean decomposition, permutation entropy and extreme learning machine
【2h】

Gearbox fault diagnosis based on local mean decomposition, permutation entropy and extreme learning machine

机译:齿轮箱故障诊断基于局部均值分解,排列熵和极限学习机

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents a fault diagnosis method for gearbox based on local mean decomposition (LMD), permutation entropy (PE) and extreme learning machine (ELM). LMD, a new self-adaptive time-frequency analysis method, is applied to decompose the vibration signal into a set of product functions (PFs). Then, PE values of the first five PFs (PF-PE) are calculated to characterize the complexity of the vibration signal. Finally, for the purpose of less time-consuming and higher accuracy, ELM is used to identify and classify of gearbox in different fault types. The experimental results demonstrate that the proposed method is effective in diagnosing and classifying different states of gearbox in short time.
机译:本文介绍了基于局部平均分解(LMD),置换熵(PE)和极端学习机(ELM)的齿轮箱故障诊断方法。 LMD,一种新的自适应时频分析方法应用于将振动信号分解为一组产品功能(PFS)。然后,计算前五个PFS(PF-PE)的PE值以表征振动信号的复杂性。最后,出于较少耗时和更高的准确性,ELM用于识别和分类不同故障类型的变速箱。实验结果表明,所提出的方法在短时间内有效地诊断和分类齿轮箱的不同状态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号