首页> 外文OA文献 >Continuous Attractor Neural Networks: Candidate of a Canonical Model for Neural Information Representation
【2h】

Continuous Attractor Neural Networks: Candidate of a Canonical Model for Neural Information Representation

机译:连续吸引子神经网络:神经信息表示的规范模型的候选者

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Owing to its many computationally desirable properties, the model of continuous attractor neural networks (CANNs) has been successfully applied to describe the encoding of simple continuous features in neural systems, such as orientation, moving direction, head direction, and spatial location of objects. Recent experimental and computational studies revealed that complex features of external inputs may also be encoded by low-dimensional CANNs embedded in the high-dimensional space of neural population activity. The new experimental data also confirmed the existence of the M-shaped correlation between neuronal responses, which is a correlation structure associated with the unique dynamics of CANNs. This body of evidence, which is reviewed in this report, suggests that CANNs may serve as a canonical model for neural information representation.
机译:由于其许多计算所需的性质,已经成功地应用了连续吸引子神经网络(CANCE)的模型来描述神经系统中简单的连续特征的编码,例如取向,移动方向,头部方向和物体的空间位置。最近的实验和计算研究表明,外部输入的复杂特征也可以通过嵌入神经群体活动的高尺寸空间中的低维罐来编码。新的实验数据还证实了神经元响应之间的M形相关性,这是与碱基的独特动态相关的相关结构。该报告中审查的证据尸体表明,戛纳可以作为神经信息表示的规范模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号