首页> 外文OA文献 >Multi-objective optimized connectivity restoring of disjoint segments using mobile data collectors in wireless sensor network
【2h】

Multi-objective optimized connectivity restoring of disjoint segments using mobile data collectors in wireless sensor network

机译:在无线传感器网络中使用移动数据收集器的多目标优化连接恢复不相交的段

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Abstract Wireless sensor networks (WSNs) have been used extensively in a range of applications, which realizes data acquisition, processing, transmission, and analysis in an interesting area. Harsh surroundings and their inherent vulnerability often mean that these networks suffer from simultaneous node failure possibly causing the network to become partitioned into multiple disjointed segments. This in turn can prevent the gathering of data from the sensors and subsequent transmission to the sink, causing the whole network to fail. In this paper, a strategy is presented for restoring multi-objective optimization connectivity of these segments using mobile data collectors (MDCs), by considering the segments as collections of sensor nodes and not as some representative node. Different from existing uses of MDCs for restoration, the delay in data collection and task balance is considered, and the network connectivity and data acquisition path optimization problem are transformed into an improved multi-travelling salesman problem (iMTSP). An improved multi-objective optimization genetic algorithm for solving the optimal collection data collector position and moving paths is proposed, which introduces virtual segments and hierarchical chromosome structure, improved population diversity, and custom coding and decoding. The simulation results show that the proposed method can effectively solve the iMTSP of the Pareto optimal solution and can provide a new strategy for connectivity-restoring technology in WSNs. Compared with NSGA-II, the diversity of the proposed gene algorithm represents a clear improvement.
机译:摘要无线传感器网络(WSN)已广泛使用在一系列应用中,这实现了一个有趣区域中的数据采集,处理,传输和分析。苛刻的环境和其固有的漏洞通常意味着这些网络遭受同时节点故障可能导致网络被划分为多个脱节段。这反过来可以防止从传感器收集数据并随后传输到沉没,导致整个网络失败。在本文中,提出了一种使用移动数据收集器(MDC)来恢复这些段的多目标优化连接的策略,通过将段视为传感器节点的集合而不是一些代表节点来恢复这些段的多目标优化连接。不同于MDC的现有用途恢复,考虑了数据收集和任务余额的延迟,并且网络连接和数据采集路径优化问题被转换为改进的多行长推销员问题(IMTSP)。提出了一种改进的用于解决最佳收集数据收集器位置和移动路径的多目标优化遗传算法,这引入了虚拟段和分层染色体结构,改善了群体分集和定制编码和解码。仿真结果表明,该方法可以有效地解决了Pareto最佳解决方案的IMTSP,可以为WSN中的连接恢复技术提供新的策略。与NSGA-II相比,所提出的基因算法的多样性表示明显的改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号